Permeability estimation is a vital step in reservoir engineering due to its effect on reservoir's characterization, planning for perforations, and economic efficiency of the reservoirs. The core and well-logging data are the main sources of permeability measuring and calculating respectively. There are multiple methods to predict permeability such as classic, empirical, and geostatistical methods. In this research, two statistical approaches have been applied and compared for permeability prediction: Multiple Linear Regression and Random Forest, given the (M) reservoir interval in the (BH) Oil Field in the northern part of Iraq. The dataset was separated into two subsets: Training and Testing in order to cross-validate the accuracy and the performance of the algorithms. The random forest algorithm was the most accurate method leading to lowest Root Mean Square Prediction Error (RMSPE) and highest Adjusted R-Square than multiple linear regression algorithm for both training and testing subset respectively. Thus, random Forest algorithm is more trustable in permeability prediction in non-cored intervals and its distribution in the geological model.
With the escalation of cybercriminal activities, the demand for forensic investigations into these crimeshas grown significantly. However, the concept of systematic pre-preparation for potential forensicexaminations during the software design phase, known as forensic readiness, has only recently gainedattention. Against the backdrop of surging urban crime rates, this study aims to conduct a rigorous andprecise analysis and forecast of crime rates in Los Angeles, employing advanced Artificial Intelligence(AI) technologies. This research amalgamates diverse datasets encompassing crime history, varioussocio-economic indicators, and geographical locations to attain a comprehensive understanding of howcrimes manifest within the city. Lev
... Show MoreSupport vector machine (SVM) is a popular supervised learning algorithm based on margin maximization. It has a high training cost and does not scale well to a large number of data points. We propose a multiresolution algorithm MRH-SVM that trains SVM on a hierarchical data aggregation structure, which also serves as a common data input to other learning algorithms. The proposed algorithm learns SVM models using high-level data aggregates and only visits data aggregates at more detailed levels where support vectors reside. In addition to performance improvements, the algorithm has advantages such as the ability to handle data streams and datasets with imbalanced classes. Experimental results show significant performance improvements in compa
... Show MoreShadow removal is crucial for robot and machine vision as the accuracy of object detection is greatly influenced by the uncertainty and ambiguity of the visual scene. In this paper, we introduce a new algorithm for shadow detection and removal based on different shapes, orientations, and spatial extents of Gaussian equations. Here, the contrast information of the visual scene is utilized for shadow detection and removal through five consecutive processing stages. In the first stage, contrast filtering is performed to obtain the contrast information of the image. The second stage involves a normalization process that suppresses noise and generates a balanced intensity at a specific position compared to the neighboring intensit
... Show MoreRadiological assessment for the East Baghdad oilfield-southern part was conducted in the current study. 10 samples (scale, soil, sludge, water, and oil) from the different stages of oil production were collected. 232Th, 226Ra, and 40K in the samples were analyzed with 40% efficiency for Gamma spectrometry. system based on HPGe. The findings indicated that the examined sites exhibit comparatively lower levels of NORM contamination, in contrast to other global oilfields. Nevertheless, certain areas, particularly those within separation stages, demonstrate relatively elevated NORM concentrations exceeding the global average in soil and sludge. The maximum value of 226Ra, 232Th, was found in sludge sample the findings indicated that ove
... Show MoreThe petrophysical characteristics of five wells drilled into the Sa'di Formation in the Halfaya oil field were evaluated using IP software to determine a reservoir and explore hydrocarbon reserve zones. The lithology was evaluated using the M-N cross-plot method. The diagram showed that the Sa'di Formation was mainly composed of calcite (represented by the limestone region) is the main mineral in the Sa′di Reservoir. Using a density-neutron cross plot to identify the lithology showed that the formation mainly consists of limestone with minor shale. Gamma-ray logs were employed to calculate the shale quantity in each well. The porosity at weak hole intervals was calculated using a sonic log and neutron-density log at the reservoir
... Show MoreAbstract
The critical success factors of the means of the most modern in determining the main directions for organizations to achieve competitive advantage. and can be a critical success factors in organizations that overlap in the functional areas of the organization. that successful organizations use these factors to get to the uniqueness and distinction. as the entrance of critical success factors with the capacity Evaluative phase correction because discovery increases the perception of managers of what is important to the organization and using them to get to the Strategic Entrepreneurship. as it begins in terms of permanence of success and
... Show MorePermeability data has major importance work that should be handled in all reservoir simulation studies. The importance of permeability data increases in mature oil and gas fields due to its sensitivity for the requirements of some specific improved recoveries. However, the industry has a huge source of data of air permeability measurements against little number of liquid permeability values. This is due to the relatively high cost of special core analysis.
The current study suggests a correlation to convert air permeability data that are conventionally measured during laboratory core analysis into liquid permeability. This correlation introduces a feasible estimation in cases of data loose and poorly consolidated formations, or in cas
The map of permeability distribution in the reservoirs is considered one of the most essential steps of the geologic model building due to its governing the fluid flow through the reservoir which makes it the most influential parameter on the history matching than other parameters. For that, it is the most petrophysical properties that are tuned during the history matching. Unfortunately, the prediction of the relationship between static petrophysics (porosity) and dynamic petrophysics (permeability) from conventional wells logs has a sophisticated problem to solve by conventional statistical methods for heterogeneous formations. For that, this paper examines the ability and performance of the artificial intelligence method in perme
... Show MoreThe aim of this study is to investigate the feasibility of underground storage of gas in Um El-Radhuma formation /Ratawi field. This formation is an aquifer consisting of a high permeable dolomitebeds overlain by impermeable anhydrite bed of Rus formation. Interactive petrophysics (IP), Petrel REand Eclipse 100 softwares were used to conduct a well log interpretation, build a reservoir simulationmodel and predict the reservoir behavior during storage respectively. A black oil, three dimensionaland two phase fluid model has been used. The results showed that the upper part of Um El-Radhumaformation is suitable for underground gas storage, because of the seal of its cap rock and capability ofreserving gas in the reservoir. It was foun
... Show More