Preferred Language
Articles
/
mRe9Zo4BVTCNdQwCbkZ3
Advanced Machine Learning application for Permeability Prediction for (M) Formation in an Iraqi Oil Field
...Show More Authors

Permeability estimation is a vital step in reservoir engineering due to its effect on reservoir's characterization, planning for perforations, and economic efficiency of the reservoirs. The core and well-logging data are the main sources of permeability measuring and calculating respectively. There are multiple methods to predict permeability such as classic, empirical, and geostatistical methods. In this research, two statistical approaches have been applied and compared for permeability prediction: Multiple Linear Regression and Random Forest, given the (M) reservoir interval in the (BH) Oil Field in the northern part of Iraq. The dataset was separated into two subsets: Training and Testing in order to cross-validate the accuracy and the performance of the algorithms. The random forest algorithm was the most accurate method leading to lowest Root Mean Square Prediction Error (RMSPE) and highest Adjusted R-Square than multiple linear regression algorithm for both training and testing subset respectively. Thus, random Forest algorithm is more trustable in permeability prediction in non-cored intervals and its distribution in the geological model.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Jan 01 2021
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
BotDetectorFW: an optimized botnet detection framework based on five features-distance measures supported by comparisons of four machine learning classifiers using CICIDS2017 dataset
...Show More Authors

<p><span>A Botnet is one of many attacks that can execute malicious tasks and develop continuously. Therefore, current research introduces a comparison framework, called BotDetectorFW, with classification and complexity improvements for the detection of Botnet attack using CICIDS2017 dataset. It is a free online dataset consist of several attacks with high-dimensions features. The process of feature selection is a significant step to obtain the least features by eliminating irrelated features and consequently reduces the detection time. This process implemented inside BotDetectorFW using two steps; data clustering and five distance measure formulas (cosine, dice, driver &amp; kroeber, overlap, and pearson correlation

... Show More
View Publication
Scopus (7)
Crossref (2)
Scopus Crossref
Publication Date
Mon Nov 30 2020
Journal Name
Journal Of Economics And Administrative Sciences
Evaluating Quality of Control Policies and Procedures for Banking Transactions Using the Non-application Gap Model to Enhance Financial Reporting Requirements Applied Study in an Iraqi Private Bank
...Show More Authors

The research aims to enhance the level of evaluation of the performance of banking transactions control policies and procedures. The research is based on the following hypothesis: efficient transactions control policies and procedures contribute enhancing financial reporting, by assessing non-application gap of those policies and procedures in a manner that helps to prevent, discover, and correct material misstatementsThe researchers designed an examination list that includes the control policies and procedures related to the transactions, as a guide to the bank audit program prepared by the Federal Financial Supervision Bureau. The research methodology is

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Tue Oct 01 2013
Journal Name
Journal Of Economics And Administrative Sciences
Comparison Robust M Estimate With Cubic Smoothing Splines For Time-Varying Coefficient Model For Balance Longitudinal Data
...Show More Authors

In this research، a comparison has been made between the robust estimators of (M) for the Cubic Smoothing Splines technique، to avoid the problem of abnormality in data or contamination of error، and the traditional estimation method of Cubic Smoothing Splines technique by using two criteria of differentiation which are (MADE، WASE) for different sample sizes and disparity levels to estimate the chronologically different coefficients functions for the balanced longitudinal data which are characterized by observations obtained through (n) from the independent subjects، each one of them is measured repeatedly by group of  specific time points (m)،since the frequent measurements within the subjects are almost connected an

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed May 17 2023
Journal Name
Journal Of Engineering
A Simulation of Core Displacement Experiments for the Determination of the Relative Permeability
...Show More Authors

Computations of the relative permeability curves were made through their representation by two functions for wetting and nonwetting phases. Each function contains one parameter that controls the shape of the relative permeability curves. The values of these parameters are chosen to minimize an objective function, that is represented as a weighted sum of the squared differences between experimentally measured data and the corresponding data calculated by a mathematical model simulating the experiment. These data comprise the pressure drop across core samples and the recovery response of the displacing phase. Two mathematical models are constructed in this study to simulate incompressible, one-dimensional, two-phase flow. The first model d

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Jun 01 2022
Journal Name
Baghdad Science Journal
Advanced GIS-based Multi-Function Support System for Identifying the Best Route
...Show More Authors

Geographic Information Systems (GIS) are obtaining a significant role in handling strategic applications in which data are organized as records of multiple layers in a database. Furthermore, GIS provide multi-functions like data collection, analysis, and presentation. Geographic information systems have assured their competence in diverse fields of study via handling various problems for numerous applications. However, handling a large volume of data in the GIS remains an important issue. The biggest obstacle is designing a spatial decision-making framework focused on GIS that manages a broad range of specific data to achieve the right performance. It is very useful to support decision-makers by providing GIS-based decision support syste

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Sun Dec 02 2018
Journal Name
Journal Of The College Of Education For Women
The Role of Local Satellite Channels in the formation of knowledge and trends of the Iraqi Public Towards Terrorism: A Field Study
...Show More Authors

Terrorism is a global phenomenon that engulfs most regions of the world to varying degrees. Media outlets are aware of the many incidents of violence and terrorism that have increased in recent times. The differences between the size of the phenomenon in different societies are the causes and severity of the phenomenon. On the role of local satellite channels in shaping the knowledge and trends of the Iraqi public towards the events of terrorism, in light of the assumptions of reliance on the media. The importance of this study is that it assesses the role of local satellite channels in the formation of knowledge and trends The study seeks to know the extent of exposure of the Iraqi public to local satellite channels, and to reveal the e

... Show More
View Publication Preview PDF
Publication Date
Sun Jun 20 2021
Journal Name
Baghdad Science Journal
Performance Evaluation of Intrusion Detection System using Selected Features and Machine Learning Classifiers
...Show More Authors

Some of the main challenges in developing an effective network-based intrusion detection system (IDS) include analyzing large network traffic volumes and realizing the decision boundaries between normal and abnormal behaviors. Deploying feature selection together with efficient classifiers in the detection system can overcome these problems.  Feature selection finds the most relevant features, thus reduces the dimensionality and complexity to analyze the network traffic.  Moreover, using the most relevant features to build the predictive model, reduces the complexity of the developed model, thus reducing the building classifier model time and consequently improves the detection performance.  In this study, two different sets of select

... Show More
View Publication Preview PDF
Scopus (26)
Crossref (18)
Scopus Clarivate Crossref
Publication Date
Thu Dec 31 2015
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Prediction of Shear Wave velocity for carbonate rocks
...Show More Authors

In many oil fields only the BHC logs (borehole compensated sonic tool) are available to provide interval transit time (Δtp), the reciprocal of compressional wave velocity VP.

   To calculate the rock elastic or inelastic properties, to detect gas-bearing formations, the shear wave velocity VS is needed. Also VS is useful in fluid identification and matrix mineral identification.

   Because of the lack of wells with shear wave velocity data, so many empirical models have been developed to predict the shear wave velocity from compressional wave velocity. Some are mathematical models others used the multiple regression method and neural network technique.

   In this study a number of em

... Show More
View Publication Preview PDF
Publication Date
Wed Sep 01 2021
Journal Name
International Journal Of Nonlinear Analysis And Application
Suggested methods for prediction using semiparametric regression function
...Show More Authors

Ferritin is a key organizer of protected deregulation, particularly below risky hyperferritinemia, by straight immune-suppressive and pro-inflammatory things. , We conclude that there is a significant association between levels of ferritin and the harshness of COVID-19. In this paper we introduce a semi- parametric method for prediction by making a combination between NN and regression models. So, two methodologies are adopted, Neural Network (NN) and regression model in design the model; the data were collected from مستشفى دار التمريض الخاص for period 11/7/2021- 23/7/2021, we have 100 person, With COVID 12 Female & 38 Male out of 50, while 26 Female & 24 Male non COVID out of 50. The input variables of the NN m

... Show More
Preview PDF
Scopus
Publication Date
Mon Nov 20 2028
Journal Name
Iraqi Journal Of Market Research And Consumer Protection
DETERMINATION OF OPTIMAL CONDITIONS FOR CAROTENOIDS PRODUCTION BY CHEMICAL MUTANAT LOCAL ISOLATE RHODOTORUL MUCILAGENOSA M.: DETERMINATION OF OPTIMAL CONDITIONS FOR CAROTENOIDS PRODUCTION BY CHEMICAL MUTANAT LOCAL ISOLATE RHODOTORUL MUCILAGENOSA M.
...Show More Authors

The aim of this study was to increasing natural carotenoides production by a locally isolate Rodotorula mucilagenosa M. by determination of the optimal conditions for growth and production of this agents, for encouragest to use it in food application permute artificial pigments which harmfull for consumer health and envieronmental. The optimal condition of carotenoides production from Rhodotorula mucilaginosa M were studied. The results shows the best carbon and nitrogen source were glucose and yeast extract. The carotenoids a mount production was 47430 microgram ̸ litter and 47460 microgram ̸ litter, respectively, and the optimum temperature was 30°C, PH 6, that the carotenoides a mount was 47470 microgram ̸ litter and 47670 microgr

... Show More
View Publication Preview PDF