Permeability estimation is a vital step in reservoir engineering due to its effect on reservoir's characterization, planning for perforations, and economic efficiency of the reservoirs. The core and well-logging data are the main sources of permeability measuring and calculating respectively. There are multiple methods to predict permeability such as classic, empirical, and geostatistical methods. In this research, two statistical approaches have been applied and compared for permeability prediction: Multiple Linear Regression and Random Forest, given the (M) reservoir interval in the (BH) Oil Field in the northern part of Iraq. The dataset was separated into two subsets: Training and Testing in order to cross-validate the accuracy and the performance of the algorithms. The random forest algorithm was the most accurate method leading to lowest Root Mean Square Prediction Error (RMSPE) and highest Adjusted R-Square than multiple linear regression algorithm for both training and testing subset respectively. Thus, random Forest algorithm is more trustable in permeability prediction in non-cored intervals and its distribution in the geological model.
Abstract  
... Show MoreOne of the most important problems in the oil production process and when its continuous flow, is emulsified oil (w/o emulsion), which in turn causes many problems, from the production line to the extended pipelines that are then transported to the oil refining process. It was observed that the nanomaterial (SiO2) supported the separation process by adding it to the emulsion sample and showed a high separation rate with the demulsifiers (RB6000) and (sebamax) where the percentage of separation was greater than (90 and 80 )% respectively, and less than that when dealing with (Sodium dodecyl sulfate and Diethylene glycol), the percentage of separation was (60% and 50%) respectively.
The high proportion
... Show MoreThe need for wireless sensing technology has rapidly increased recently, specifically the usage of electromagnetic waves which becoming more required as a source of information. Silicon carbide (SiC) Nano particles has been used in this study, the material under test (MUT) was exposed directly to a microwave field to examine the electromagnetic behavior. The permittivity and permeability were investigated with different filler materials to approach best and optimal electromagnetic absorbing characteristics to assist engineers to monitor structure-based composite for defects evaluation that may occur during operation conditions or through manufacturing process. XRD, FESEM and both complex permittivity and permeability were measured f
... Show MoreWeb application protection lies on two levels: the first is the responsibility of the server management, and the second is the responsibility of the programmer of the site (this is the scope of the research). This research suggests developing a secure web application site based on three-tier architecture (client, server, and database). The security of this system described as follows: using multilevel access by authorization, which means allowing access to pages depending on authorized level; password encrypted using Message Digest Five (MD5) and salt. Secure Socket Layer (SSL) protocol authentication used. Writing PHP code according to set of rules to hide source code to ensure that it cannot be stolen, verification of input before it is s
... Show MoreLet R be a commutative ring with non-zero identity element. For two fixed positive integers m and n. A right R-module M is called fully (m,n) -stable relative to ideal A of , if for each n-generated submodule of Mm and R-homomorphism . In this paper we give some characterization theorems and properties of fully (m,n) -stable modules relative to an ideal A of . which generalize the results of fully stable modules relative to an ideal A of R.
Breast cancer is a heterogeneous disease characterized by molecular complexity. This research utilized three genetic expression profiles—gene expression, deoxyribonucleic acid (DNA) methylation, and micro ribonucleic acid (miRNA) expression—to deepen the understanding of breast cancer biology and contribute to the development of a reliable survival rate prediction model. During the preprocessing phase, principal component analysis (PCA) was applied to reduce the dimensionality of each dataset before computing consensus features across the three omics datasets. By integrating these datasets with the consensus features, the model's ability to uncover deep connections within the data was significantly improved. The proposed multimodal deep
... Show MoreRetinopathy of prematurity (ROP) can cause blindness in premature neonates. It is diagnosed when new blood vessels form abnormally in the retina. However, people at high risk of ROP might benefit significantly from early detection and treatment. Therefore, early diagnosis of ROP is vital in averting visual impairment. However, due to a lack of medical experience in detecting this condition, many people refuse treatment; this is especially troublesome given the rising cases of ROP. To deal with this problem, we trained three transfer learning models (VGG-19, ResNet-50, and EfficientNetB5) and a convolutional neural network (CNN) to identify the zones of ROP in preterm newborns. The dataset to train th