Structure type and disorder have become important questions in catalyst design, with the most active catalysts often noted to be “disordered” or “amorphous” in nature. To quantify the effects of disorder and structure type systematically, a test set of manganese(III,IV) oxides was developed and their reactivity as oxidants and catalysts tested against three substrates: methylene blue, hydrogen peroxide, and water. We find that disorder destabilizes the materialsthermodynamically, making them stronger chemical oxidantsbut not necessarily better catalysts. For the disproportionation of H2O2 and the oxidative decomposition of methylene blue, MnOx-mediated direct oxidation competes with catalytically mediated oxidation, making the most disordered materials the worst catalysts, whereas for water oxidation, the most disordered materials and the strongest chemical oxidants are also the best catalysts. Even though the manganese(III,IV) oxide materials were able to oxidize both methylene blue and peroxides directly,the same materials were able to act as catalysts for the oxidation of methylene blue in the presence of peroxides. This impliesthat effects of electron transfer time scales are important and strongly affected by structure type and disorder. This is discussed In the context of catalyst design.
Fluorescent proteins (FPs) have revolutionised the life sciences, but the chromophore maturation mechanism is still not fully understood. Here we photochemically trap maturation at a crucial stage and structurally characterise the intermediate.
The aim of this study was to investigate antibiotic amoxicillin removal from synthetic pharmaceutical wastewater. Titanium dioxide (TiO2) was used in photocatalysis treatment method under natural solar irradiation in a tubular reactor. The photocatalytic removal efficiency was evaluated by the reduction in amoxicillin concentration. The effects of antibiotics concentration, TiO2 dose, irradiation time and the effect of pH were studied. The optimum conditions were found to be irradiation time 5 hr, catalyst dosage 0.6 g/L, flow rate 1 L/min and pH 5. The photocatalytic treatment was able to destruct the amoxicillin in 5 hr and induced an amoxicillin reduction of about 10% with 141.8 kJ/L accumulate
... Show MoreDiesel engine oil was subjected to thermal oxidization (TO) for six periods of time (0 h, 24 h, 48 h, 72 h, 96 h, and 120 h) and was subsequently characterized by terahertz time domain spectroscopy (THz-TDS). The THz refractive index generally increased with oxidation time. The measurement method illustrated the potential of THz-TDS when a fixed setup with a single cuvette is used. A future miniaturized setup installed in an engine would be an example of a fixed setup. For the refractive index, there were highly significant differences among the oxidation times across most of the 0.3–1.7 THz range.
* Khalifa E. Sharquie1, Hayder Al-Hamamy2, Adil A. Noaimi1, Mohammed A. Al-Marsomy3, Husam Ali Salman4, American Journal of Dermatology and Venereology, 2014 - Cited by 2
The PbSe alloy was prepared in evacuated quarts tubs by the method of melt quenching from element, the PbSe thin films prepared by thermal evaporation method and deposited at different substrate temperature (Ts) =R.T ,373 and 473K . The thin films that deposited at room temperature (R.T=303)K was annealed at temperature, Ta= R.T, 373 and 473K . By depended on D.C conductivity measurements calculated the density of state (DOS), The density of extended state N(Eext) increases with increasing the Ts and Ta, while the density of localized state N(Eloc) is decreased . We investigated the absorption coefficient (?) that measurement from reflection and transmission spectrum result, and the effect of Ts and Ta on it , also we calculated the tai
... Show MoreBackground: As a multifactorial disorder, temporomandibular joint (TMD) is difficult to diagnose, and multiple factors affect the joint and cause the temporomandibular disorder. Standardization of clinical diagnosis of TMD should be used to reach a definite clinical diagnosis; the condylar bone may degenerate in accordance with these disorders. Aims: Evaluate the correlation between the clinical diagnosis and degenerative condylar change (flattening, sclerosis, erosion, and osteophyte). Materials and Methods: A prospective study with a study group of 97 TMD patients (total of 194 joints) aged 20 to 50. Patients were sent to cone beam computed tomography (CBCT) to assess the degenerative condylar change. Results: No association was found bet
... Show MoreBackground: Lamotrigine is a second generation Anti-epileptic drug; it is widely used for the treatment of epilepsy and bipolar disorder. Sufficient data is not available concerning its teratogenicity. Aim of the study: The study has been carried out to evaluate the effect of lamotrigine on Rat kidney development. Materials and Methods: The study was conducted on 10 pregnant Albino Rats (Rattus rattus) divided equally into two groups, control and experiment groups. Experiment group received lamotrigne 10mg/kg/day orally using naso-gastric tube from the first day of gestation until the first week after birth, while the control group received distilled water. Newborn kidneys were collected at day 7 postnatal and fixated in bouin’s solution,
... Show MoreAlPO4 catalysts supported with WO3 were prepared by impregnating the catalysts with ammonium metatungstate. The catalysts were checked by X-ray Diffraction (XRD), AFM, and SEM; also, the catalysts analysis was done by X-Ray (EDX). Finally, the N2 adsorption-desorption was used to measure the pore volume and surface area of the catalyst. The prepared catalyst has a surface area of 185.83 m2/g, pore volume of 0.645 cm3/g at a calcination temperature of 500°C for 3 hrs, and particle size of AlPO4 with an average of 35.36 nm. Transesterification of edible oil using WO3/AlPO4 was performed, it was observed that WO3/AlPO4 catalysts give high conversion of edible oil, and this is attributed to the high surface area, smaller particle size, and the
... Show MoreIn this research tri metal oxides were fabricated by simple chemical spray pyrolysis technique from (Sn(NO3)2.20 H2O, Zn(NO3)2.6 H2O, Cd(NO3)2.4 H2O) salts at concentration 0.1M with mixing weight ratio 50:50 were fabricated on silicon substrate n-type (111). (with & without the presence of grooves by the following diemensions (20μm width, 7.5μm depth) with thickness was about ( 0.1 ±0.05 µm) using water soluble as precursors at a substrate temperature 550 ºC±5, with spray distance (15 cm) and their gas sensing properties toward H2S gas at different concentrations (10,50,100,500 ppmv) in air were investigated at room te
... Show More