The rise of Industry 4.0 and smart manufacturing has highlighted the importance of utilizing intelligent manufacturing techniques, tools, and methods, including predictive maintenance. This feature allows for the early identification of potential issues with machinery, preventing them from reaching critical stages. This paper proposes an intelligent predictive maintenance system for industrial equipment monitoring. The system integrates Industrial IoT, MQTT messaging and machine learning algorithms. Vibration, current and temperature sensors collect real-time data from electrical motors which is analyzed using five ML models to detect anomalies and predict failures, enabling proactive maintenance. The MQTT protocol is used for efficient communication between the sensors, gateway devices, and the cloud server. The system was tested on an operational motors dataset, five machine learning algorithms, namely k-nearest neighbor (KNN), supported vector machine (SVM), random forest (RF), linear regression (LR), and naive bayes (NB), are used to analyze and process the collected data to predict motor failures and offer maintenance recommendations. Results demonstrate the random forest model achieves the highest accuracy in failure prediction. The solution minimizes downtime and costs through optimized maintenance schedules and decisions. It represents an Industry 4.0 approach to sustainable smart manufacturing.
Nowadays, internet security is a critical concern; the One of the most difficult study issues in network security is "intrusion detection". Fight against external threats. Intrusion detection is a novel method of securing computers and data networks that are already in use. To boost the efficacy of intrusion detection systems, machine learning and deep learning are widely deployed. While work on intrusion detection systems is already underway, based on data mining and machine learning is effective, it requires to detect intrusions by training static batch classifiers regardless considering the time-varying features of a regular data stream. Real-world problems, on the other hand, rarely fit into models that have such constraints. Furthermor
... Show MoreFuzzy logic is used to solve the load flow and contingency analysis problems, so decreasing computing time and its the best selection instead of the traditional methods. The proposed method is very accurate with outstanding computation time, which made the fuzzy load flow (FLF) suitable for real time application for small- as well as large-scale power systems. In addition that, the FLF efficiently able to solve load flow problem of ill-conditioned power systems and contingency analysis. The FLF method using Gaussian membership function requires less number of iterations and less computing time than that required in the FLF method using triangular membership function. Using sparsity technique for the input Ybus sparse matrix data gi
... Show MoreA remarkable correlation between chaotic systems and cryptography has been established with sensitivity to initial states, unpredictability, and complex behaviors. In one development, stages of a chaotic stream cipher are applied to a discrete chaotic dynamic system for the generation of pseudorandom bits. Some of these generators are based on 1D chaotic map and others on 2D ones. In the current study, a pseudorandom bit generator (PRBG) based on a new 2D chaotic logistic map is proposed that runs side-by-side and commences from random independent initial states. The structure of the proposed model consists of the three components of a mouse input device, the proposed 2D chaotic system, and an initial permutation (IP) table. Statist
... Show MoreThe research aimed at identifying the effect of using constructive learning model on academic achievement and learning soccer dribbling Skill in 2nd grade secondary school students. The researcher used the experimental method on (30) secondary school students; 10 selected for pilot study, 20 were divided into two groups. The experimental group followed constructive learning model while the controlling group followed the traditional method. The experimental program lasted for eight weeks with two teaching sessions per week for each group. The data was collected and treated using SPSS to conclude the positive effect of using constructive learning model on developing academic achievement and learning soccer dribbling Skill in 2nd grade seconda
... Show MoreThis paper describes a practical study on the impact of learning's partners, Bluetooth Broadcasting system, interactive board, Real – time response system, notepad, free internet access, computer based examination, and interaction classroom, etc, had on undergraduate student performance, achievement and involving with lectures. The goal of this study is to test the hypothesis that the use of such learning techniques, tools, and strategies to improve student learning especially among the poorest performing students. Also, it gives some kind of practical comparison between the traditional way and interactive way of learning in terms of lectures time, number of tests, types of tests, student's scores, and student's involving with lectures
... Show MoreIn this study, the four tests employed for non-linear dependence which is Engle (1982), McLeod &Li (1983), Tsay (1986), and Hinich & Patterson (1995). To test the null hypothesis that the time series is a serially independent and identical distribution process .The linear structure is removed from the data which is represent the sales of State Company for Electrical Industries, through a pre-whitening model, AR (p) model .From The results for tests to the data is not so clear.
This paper investigates the performance evaluation of two state feedback controllers, Pole Placement (PP) and Linear Quadratic Regulator (LQR). The two controllers are designed for a Mass-Spring-Damper (MSD) system found in numerous applications to stabilize the MSD system performance and minimize the position tracking error of the system output. The state space model of the MSD system is first developed. Then, two meta-heuristic optimizations, Simulated Annealing (SA) optimization and Ant Colony (AC) optimization are utilized to optimize feedback gains matrix K of the PP and the weighting matrices Q and R of the LQR to make the MSD system reach stabilization and reduce the oscillation of the response. The Matlab softwar
... Show Moreهدفت الدراسة الى الاهتمام واستغلال ماهو جديد من تقنيات واجهزة حديثة في تعليم السباحة الحرة عن طريق توجيه الاطفال على تطوير مداركهم واستيعابهم بالتطور التكنولوجي الذي يتناوله العالم ،قامت الباحثتان باعداد منهج تعليمي باستخدام نظارة الواقع الافتراضي وذالك بتوفير بيئة مشابهة للبيئة الحقيقية تحاكي مدارك عقول الاطفال في عالم افتراضي لتتكون صورة كاملة عن مهارات السباحة الحرة ،ومن هنا اتت المشكلة نتيجة تعل
... Show MoreObjectives: The research aims to demonstrate the integration between Quantum Computing (QC) and Predictive Analysis (PA) and their role in reducing costs while achieving Sustainable Development Goals (SDGs). The study addresses the inefficiencies in calculating and measuring product costs under traditional systems and examines how QC and PA can enhance cost reduction and product quality to better meet customer needs. Additionally, the research seeks to strengthen the theoretical framework with practical applications, illustrating how this integration improves a company’s competitive position while promoting social, environmental, and economic sustainability. Methods: The study employs a descriptive analytical approach, focusi
... Show More