The rise of Industry 4.0 and smart manufacturing has highlighted the importance of utilizing intelligent manufacturing techniques, tools, and methods, including predictive maintenance. This feature allows for the early identification of potential issues with machinery, preventing them from reaching critical stages. This paper proposes an intelligent predictive maintenance system for industrial equipment monitoring. The system integrates Industrial IoT, MQTT messaging and machine learning algorithms. Vibration, current and temperature sensors collect real-time data from electrical motors which is analyzed using five ML models to detect anomalies and predict failures, enabling proactive maintenance. The MQTT protocol is used for efficient communication between the sensors, gateway devices, and the cloud server. The system was tested on an operational motors dataset, five machine learning algorithms, namely k-nearest neighbor (KNN), supported vector machine (SVM), random forest (RF), linear regression (LR), and naive bayes (NB), are used to analyze and process the collected data to predict motor failures and offer maintenance recommendations. Results demonstrate the random forest model achieves the highest accuracy in failure prediction. The solution minimizes downtime and costs through optimized maintenance schedules and decisions. It represents an Industry 4.0 approach to sustainable smart manufacturing.
The ultimate goal of any sale contract is to maximize the combined returns of the parties, knowing that these returns are not realized (in long-term contracts) except in the final stages of the contract. Therefore, this requires the parties to the contract to leave some elements open, including the price, because the adoption of a fixed price and inflexible will not be appropriate to meet their desires when contracting, especially with ignorance of matters beyond their will and may affect the market conditions, and the possibility of modifying the fixed price through The elimination is very limited, especially when the parties to the contract are equally in terms of economic strength. Hence, in order to respond to market uncertainties, the
... Show MoreIncorporating waste byproducts into concrete is an innovative and promising way to minimize the environmental impact of waste material while maintaining and/or improving concrete’s mechanical characteristics and strength. The proper application of sawdust as a pozzolan in the building industry remains a significant challenge. Consequently, this study conducted an experimental evaluation of sawdust as a fill material. In particular, sawdust as a fine aggregate in concrete offers a realistic structural and economical possibility for the construction of lightweight structural systems. Failure under four-point loads was investigated for six concrete-filled steel tube (CFST) specimens. The results indicated that recycled lightweight co
... Show MoreThe research aims to identify how to enhance the quality of the human resources, focusing on four dimensions (efficiency, effectiveness, flexibility, and reliability), by adopting an adventure learning method that combines theoretical and applied aspects at the same time, when developing human resources and is applied using information technology, and that Through its dimensions, which are (cooperation, interaction, communication, and understanding), as the research problem indicated a clear deficiency in the cognitive perception of the mechanism of employing adventure learning dimensions in enhancing human resources quality, so the importance of research was to present treatments and proposals to reduce this problem. To achieve
... Show MoreThe aim of this study was to identify the effectiveness of using generative learning model in learning kinetic series on rings and horizontal bar in artistic gymnastics for men ,Also, the two groups were better in learning the two series of movements on the rings and horizontal bar . The experimental method was used to design two parallel groups with pretested and posttest .The sample included third graders at the College of Physical Education and Sports Sciences - University of Baghdad ,The third class (d) was chosen to represent the control group that applied the curriculum in the college, with (12) students per group. After conducting the tribal tests, the main experiment was carried out for (8) weeks at the rate of two units per week di
... Show MoreAbstract The purpose of this study, teach the art of performing Olympic lifts (snatch and, clean and jerk) using the two methods are instructional (self-learning associated with the model) and (reverse style of partial way). Identify the effectiveness of these methods in learning the art of performance and style of the best Olympic lifting in the learning and retention of novice for Olympic lifts. The research sample consisted of 16 lifters were selected purposively representing specialist center for the care of athletic talent to weightlifting for ages 14 years. The sample was divided into two experimental, Each group (8) eight weightlifters. The experimental group used the style of the first self-learning associated with the m
... Show MoreMost intrusion detection systems are signature based that work similar to anti-virus but they are unable to detect the zero-day attacks. The importance of the anomaly based IDS has raised because of its ability to deal with the unknown attacks. However smart attacks are appeared to compromise the detection ability of the anomaly based IDS. By considering these weak points the proposed
system is developed to overcome them. The proposed system is a development to the well-known payload anomaly detector (PAYL). By
combining two stages with the PAYL detector, it gives good detection ability and acceptable ratio of false positive. The proposed system improve the models recognition ability in the PAYL detector, for a filtered unencrypt
Experimental tests were conducted to investigate the thermal performance (cooling effect) of water mist system consisting of 5μm volume median diameter droplets in reducing the heat gain entering a room through the roof and the west wall by reducing the outside surface temperature due to the evaporative cooling effect during the hot dry summer of Baghdad/Iraq. The test period
was Fifty one days during the months May, June, and July 2012. The single test day consists of 16 test hours starting from 8:00 am to 12:00 pm. The results showed a reduction range of 1.71 to 15.5℃ of the roof outside surface temperature and 21.3 to 76.6% reduction in the daily heat flux entering the room through the roof compared with the case of not using w
In this work laser detection and tracking system (LDTS) is designed and implemented using a fuzzy logic controller (FLC). A 5 mW He-Ne laser system and an array of nine PN photodiodes are used in the detection system. The FLC is simulated using MATLAB package and the result is stored in a lock up table to use it in the real time operation of the system. The results give a good system response in the target detection and tracking in the real time operation.