Hazardous materials, heavy metals, and organic toxins released into the environment have caused considerable harm to microbes, plants, animals, and humans. Wastewater is one of the most contaminated ecosystems due to heavy metals emitted mostly by human activity. Bioremediation of wastewater is an ecologically acceptable and cost-effective method of removing heavy metals from sewage; the general purpose of this study is to analyse the dependability of anaerobic sludge biomass in removing sulfur compounds and heavy metals from waste water. The anaerobic sludge biomass evaluated in this work was taken from a wastewater treatment plant (WWTP) in Al-Rustumiya, Baghdad, and grown in the mineral medium for anaerobic growth. In serum bottles, batch metal removal tests were conducted concurrently with sulphate reduction. The biomass increased from the time of inoculation medium with 20 mg·L-1 (t = 0 day, MLVSS = 688 29 mg·L-1) to the 8th day, when it reached the highest value (MLVSS = 980 48 mg·L-1); more than 90% removal was observed for copper and nickel, almost 80% for lead and cadmium metals, and less than 80% removal for chrome and zinc. In addition, in the case of lead, copper, and nickel, sulphate removal was greater than 50%. Except zinc, all metals have the capacity to remove more than 60% of the COD.
The effluent quality improvement being discharged from wastewater treatment plants is essential to maintain an environment and healthy water resources. This study was carried out to evaluate the possibility of intermittent slow sand filtration as a promising tertiary treatment method for the sequencing batch reactor (SBR) effluent. Laboratory scale slow sand filter (SSF) of 1.5 UC and 0.1 m/h filtration rate, was used to study the process performance. It was found that SSF IS very efficient in oxidizing organic matter with COD removal efficiency up to 95%, also it is capable of removing considerable amounts of phosphate with 76% and turbidity with 87% removal efficiencies. Slow sand filter efficiently reduced the mass of suspended
... Show MoreThe removal of fluoride ions from aqueous solution onto algal biomass as biosorbent in batch and continuous fluidized bed systems was studied. Batch system was used to study the effects of process parameters such as, pH (2-3.5), influent fluoride ions concentration (10- 50 mg/l), algal biomass dose (0–1.5 g/ 200 ml solution), to determine the best operating conditions. These conditions were pH=2.5, influent fluoride ions concentration= 10 mg/l, and algal biomass dose=3.5 mg/l. While, in continuous fluidized bed system, different operating conditions were used; flow rate (0.667- 0.800 l/min), bed depth (8-15 cm) corresponded to bed weight of (80- 150 g). The results show that the breakthrough time increases with the inc
... Show MoreThe objective of present study was to investigate the effect of using duplex volaticle oil of Rosmarinusoficinolis and Nigella sativain microbial quality, sensing and extending storage time of minced cold poultry meat. Duplex volaticle oil was added at 25, 50 and 75 mg/kg to minced poultry meat , these treatments were stored individually for (0 ,4 and 7) days at( 4-7) C0 . After making several microbial and sensing test. The following results were obtained:- The process of adding duplex volaticle oil of Rosmarinus officinolis and Nigella sativa to minced poultry meat led to significant reduced (P<0.01) in total arobic count, psychrophilic count and coliform bacteria during refrigerated storage periods. The results showed asignificant sens
... Show MoreThis study investigates the possibility of removing ciprofloxacin (CIP) using three types of adsorbent based on green-prepared iron nanoparticles (Fe.NPs), copper nanoparticles (Cu. NPS), and silver nanoparticles (Ag. NPS) from synthesized aqueous solution. They were characterized using different analysis methods. According to the characterization findings, each prepared NPs has the shape of a sphere and with ranges in sizes from of 85, 47, and 32 nanometers and a surface area of 2.1913, 1.6562, and 1.2387 m2/g for Fe.NPs, Cu.NPs and Ag.NPs, respectively. The effects of various parameters such as pH, initial CIP concentration, temperature, NPs dosage, and time on CIP removal were investigated through batch experiments. The res
... Show MoreKE Sharquie, AA Noaimi, ER Shwail, J Clin Exp Dermatol Res, 2012 - Cited by 41
Abstract: In this research we study the of added NaCl with concentration (0.2, 0.02)M on the spectral of cationically charged dye (cresyl violet) and anionically charged surfactant (sodium dodecyl sulphate) with different concentration, the result show two peaks appearance the first attributed to micelle and the other formation of dye surfactant complex, in addition to the increase in the quantum efficiency of emission spectrum and shifted toward long wavelength (λmax=692.5nm-626nm).
Electrocoagulation is an electrochemical method for treatment of different types of wastewater whereby sacrificial anodes corrode to release active coagulant (usually aluminium or iron cations) into solution, while simultaneous evolution of hydrogen at the cathode allows for pollutant removal by flotation or settling. The Taguchi method was applied as an experimental design and to determine the best conditions for chromium (VI) removal from wastewater. Various parameters in a batch stirred tank by iron metal electrodes: pH, initial chromium concentration, current density, distance between electrodes and KCl concentration were investigated, and the results have been analyzed using signal-to-noise (S/N) ratio. It was found that the r
... Show MoreThe main target of the current study is to investigate the microbial content and mineral contaminants of the imported meat available in the city of Baghdad and to ensure that it is free from harmful bacteria, safe and it compliances with the Iraqi standard specifications. Some trace mineral elements such as (Iron, Copper, Lead, and Cadmium) were also estimated, where 10 brands of these meats were collected. Bacteriological tests were carried out which included (total bacterial count,