Hazardous materials, heavy metals, and organic toxins released into the environment have caused considerable harm to microbes, plants, animals, and humans. Wastewater is one of the most contaminated ecosystems due to heavy metals emitted mostly by human activity. Bioremediation of wastewater is an ecologically acceptable and cost-effective method of removing heavy metals from sewage; the general purpose of this study is to analyse the dependability of anaerobic sludge biomass in removing sulfur compounds and heavy metals from waste water. The anaerobic sludge biomass evaluated in this work was taken from a wastewater treatment plant (WWTP) in Al-Rustumiya, Baghdad, and grown in the mineral medium for anaerobic growth. In serum bottles, batch metal removal tests were conducted concurrently with sulphate reduction. The biomass increased from the time of inoculation medium with 20 mg·L-1 (t = 0 day, MLVSS = 688 29 mg·L-1) to the 8th day, when it reached the highest value (MLVSS = 980 48 mg·L-1); more than 90% removal was observed for copper and nickel, almost 80% for lead and cadmium metals, and less than 80% removal for chrome and zinc. In addition, in the case of lead, copper, and nickel, sulphate removal was greater than 50%. Except zinc, all metals have the capacity to remove more than 60% of the COD.
A simple analytical method was used in the present work for the simultaneous quantification of Ciprofloxacin and Isoniazid in pharmaceutical preparations. UV-Visible spectrophotometry has been applied to quantify these compounds in pure and mixture solutions using the first-order derivative method. The method depends on the first derivative spectrophotometry using zero-cross, peak to baseline, peak to peak and peak area measurements. Good linearity was shown in the concentration range of 2 to 24 µg∙mL-1 for Ciprofloxacin and 2 to 22 µg∙mL-1 for Isoniazid in the mixture, and the correlation coefficients were 0.9990 and 0.9989 respectively using peak area mode. The limits of detection (LOD) and limits of quantification (LOQ) were
... Show MoreAbstract: In this research we study the of added NaCl with concentration (0.2, 0.02)M on the spectral of cationically charged dye (cresyl violet) and anionically charged surfactant (sodium dodecyl sulphate) with different concentration, the result show two peaks appearance the first attributed to micelle and the other formation of dye surfactant complex, in addition to the increase in the quantum efficiency of emission spectrum and shifted toward long wavelength (λmax=692.5nm-626nm).
KE Sharquie, AA Noaimi, ER Shwail, J Clin Exp Dermatol Res, 2012 - Cited by 41
Laser cleaning of materials’ surfaces implies the removal of deposited pollutants without affecting the material. Nanosecond Nd:YAG pulsed laser, operating at 1064 nm and 532nm, was utilized. Different laser intensities and number of pulses were used on metallic and non-metallic surfaces under O2 and Ar environments to remove metal oxide and crust. Cleaning efficiency was studied by optical microscope. The results indicated the superiority of 1064 nm over the 532 nm wavelength without any detectable damage to materials’ surfaces. Marble cleaned in Oxygen gas environment was better than in Ar gas.
This study was conducted to evaluate the bottled water quality for the six-producing companies in Baghdad city, where selected six brands which are the most marketed in the Iraqi market, especially in Baghdad, where taking the proper amount of bottled water in September 2015 and included the studied characteristics (EC , pH ,TDS, Turbidity, Ca+2, Mg+2, Cl-, No3-, So4-2, HCO3-, Na+ and K+) in addition to the total population of bacteria aerobic and coliform, and compare the results with the standard specifications of the Iraqi and the World Health Organization (WHO), as well as to compare the results of sampling specifications mentioned on the packaging by the producing companies. The results showed the presence of high significant differ
... Show MoreThe research discussed the possibility of adsorption of Brilliant Blue Dye (BBD) from wastewater using 13X zeolite adsorbent, which is considered a byproduct of the production process of potassium carbonate from Iraqi potash raw materials. The 13X zeolite adsorbent was prepared and characterized by X-ray diffraction that showed a clear match with the standard 13X zeolite. The crystallinity rate was 82.15% and the crystal zeolite size was 5.29 nm. The surface area and pore volume of the obtained 13X zeolite were estimated. The prepared 13X zeolite showed the ability to remove BBD contaminant from wastewater at concentrations 5 to 50 ppm and the removal reached 96.60% at the lower pollutant concentration. Adsorption measurements versus tim
... Show MoreA study on the treatment and reuse of oily wastewater generated from the process of fuel oil treatment of gas turbine power plant was performed. The feasibility of using hollow fiber ultrafiltration (UF) membrane and reverse osmosis (RO) membrane type polyamide thin-film composite in a pilot plant was investigated. Three different variables: pressure (0.5, 1, 1.5 and 2 bars), oil content (10, 20, 30 and 40 ppm), and temperature (15, 20, 30 and 40 ᵒC) were employed in the UF process while TDS was kept constant at 150 ppm. Four different variables: pressure (5, 6, 7 and 8 bar), oil content (2.5, 5, 7.5 and 10 ppm), total dissolved solids (TDS) (100, 200,300 and 400 ppm), and temperature (15, 20, 30 and 40 ᵒC) were mani
... Show More