Precise forecasting of pore pressures is crucial for efficiently planning and drilling oil and gas wells. It reduces expenses and saves time while preventing drilling complications. Since direct measurement of pore pressure in wellbores is costly and time-intensive, the ability to estimate it using empirical or machine learning models is beneficial. The present study aims to predict pore pressure using artificial neural network. The building and testing of artificial neural network are based on the data from five oil fields and several formations. The artificial neural network model is built using a measured dataset consisting of 77 data points of Pore pressure obtained from the modular formation dynamics tester. The input variables are vertical depth, bulk density, and acoustic compressional wave velocity, with the activation function of tangent sigmoid. The average percent error, absolute average percent error, mean square error, root mean square error, and correlation coefficient (R2) were applied for evaluation. The results revealed that the best artificial neural network structure was (3-8-1), with average percent error, absolute average percent error, mean square error, root mean square error, and correlation coefficient R2 of -0.52, 1.01, 3994, 63.2, and 0.995, respectively. A C++ computer program is provided with a calculation sample to simplify the implementation of the proposed artificial neural network. The dependency degree of pore pressure on each input parameter is investigated, revealing the highest impact of depth on pore pressure prediction. Furthermore, to check the validity of the artificial neural network against the different datasets, the artificial neural network performance was compared with 84 new data points and showed an advantage over the existing models. The very good performance of artificial neural network for different types of oil reservoirs and formations reveals an insignificant effect of lithology on the prediction of pore pressure.
This research dealt with the analysis of murder crime data in Iraq in its temporal and spatial dimensions, then it focused on building a new model with an algorithm that combines the characteristics associated with time and spatial series so that this model can predict more accurately than other models by comparing them with this model, which we called the Combined Regression model (CR), which consists of merging two models, the time series regression model with the spatial regression model, and making them one model that can analyze data in its temporal and spatial dimensions. Several models were used for comparison with the integrated model, namely Multiple Linear Regression (MLR), Decision Tree Regression (DTR), Random Forest Reg
... Show MoreThe research seeks to identify the image of foreign oil companies operating in Iraq among the public of Basra, and the research aims to clarify the mental image of foreign oil companies among the Iraqi public, and to identify the extent to which the Iraqi public benefit from the social responsibility programs offered by foreign oil companies and their contribution to improving the standard of living and services for the population. Nearby areas and society as a whole, the research is classified within descriptive research, and the researcher used the survey method for the Iraqi public in Basra governorate, which includes the areas in which these companies are located, and he used the scale tool to find out, so he distributed 600 que
... Show MoreThe current study focuses on utilizing artificial intelligence (AI) techniques to identify the optimal locations of production wells and types for achieving the production company’s primary objective, which is to increase oil production from the Sa’di carbonate reservoir of the Halfaya oil field in southeast Iraq, with the determination of the optimal scenario of various designs for production wells, which include vertical, horizontal, multi-horizontal, and fishbone lateral wells, for all reservoir production layers. Artificial neural network tool was used to identify the optimal locations for obtaining the highest production from the reservoir layers and the optimal well type. Fo
Diyala river is the most important tributaries in Iraq, this river suffering from pollution, therefore, this research aimed to predict organic pollutants that represented by biological oxygen demand BOD, and inorganic pollutants that represented by total dissolved solids TDS for Diyala river in Iraq, the data used in this research were collected for the period from 2011-2016 for the last station in the river known as D17, before the river meeting Tigris river in Baghdad city. Analysis Neural Network ANN was used in order to find the mathematical models, the parameters used to predict BOD were seven parameters EC, Alk, Cl, K, TH, NO3, DO, after removing the less importance parameters. While the parameters that used to predict TDS were fourte
... Show MoreThe CenomanianÐEarly Turonian reservoirs of the Mishrif Formation of the Mesopotamian Basin hold more than one-third of the proven Iraqi oil reserves. Difficulty in predicting the presence of these mostly rudistic reservoir units is mainly due to the complex paleogeography of the Mishrif depositional basin, which has not been helped by numerous previous studies using differing facies schemes over local areas. Here we present a regional microfacies-based study that incorporates earlier data into a comprehensive facies model. This shows that extensive accumulation of rudist banks usually occurred along an exterior shelf margin of the basin along an axis that runs from Hamrin to Badra a
The middle Cenomanian – early Turonian Mishrif Formation, a major carbonate reservoir unit in southern Iraq, was studied using cuttings and core samples and wireline logs (gamma‐ray, density and sonic) from 66 wells at 15 oilfields. Depositional facies ranging from deep marine to tidal flat were recorded. Microfacies interpretations together with wireline log interpretations show that the formation is composed of transgressive and regressive hemicycles. The regressive hemicycles are interpreted to indicate the progradation of rudist lithosomes (highstand systems tract deposits) towards distal basinal locations such as the Kumait, Luhais and Abu Amood oilfield areas. Transgressive hemicycles (transgressive systems tract deposits)
... Show More
The process of soil classification in Iraq for industrial purposes is important topics that need to be extensive and specialized studies. In order for the advancement of reality service and industrial in our dear country, that a lot of scientific research touched upon the soil classification in the agricultural, commercial and other fields. No source and research can be found that touched upon the classification of land for industrial purposes directly. In this research specialized programs have been used such as geographic information system software The geographical information system permits the study of local distribution of phenomena, activities and the aims that can be determined in the loca
This thesis was aimed to study gas hydrates in terms of their equilibrium conditions in bulk and their effects on sedimentary rocks. The hydrate equilibrium measurements for different gas mixtures containing CH4, CO2 and N2 were determined experimentally using the PVT sapphire cell equipment. We imaged CO2 hydrate distribution in sandstone, and investigated the hydrate morphology and cluster characteristics via μCT. Moreover, the effect of hydrate formation on the P-wave velocities of sandstone was investigated experimentally.