
BSc. University of Technology, Computer Enginnering Department
Higher diploma. University of Information Technology and Communications (UoITC) ,Informatics Institute for postgraduate studies, Baghdad, Iraq
MSc. University of Information Technology and Communications (UoITC) ,Informatics Institute for postgraduate studies, Baghdad, Iraq
Compuer Engineering Computer Science
C++ language MATLAB CAD + (SolidWorks)
This paper explores VANET topics: architecture, characteristics, security, routing protocols, applications, simulators, and 5G integration. We update, edit, and summarize some of the published data as we analyze each notion. For ease of comprehension and clarity, we give part of the data as tables and figures. This survey also raises issues for potential future research topics, such as how to integrate VANET with a 5G cellular network and how to use trust mechanisms to enhance security, scalability, effectiveness, and other VANET features and services. In short, this review may aid academics and developers in choosing the key VANET characteristics for their objectives in a single document.
Routing is the process of delivering a packet from a source to a destination in the network using a routing algorithm that tries to create an efficient path. The path should be created with minimum overhead and bandwidth consumption. In literature, routing protocols in VANET were categorized in many ways, according to different aspects. In the present study, we prefer the classification based on the number of hops to reach the destination node. In literature, these are single-hop and multi-hops protocols. We first discuss the two types and then compare the MDDV (multi-hops protocol) with VADD (single-hop protocol). The comparison is theoretically and experimentally implemented by providing a network environment consisting of SUMO, VIENS and
... Show MorePrecise forecasting of pore pressures is crucial for efficiently planning and drilling oil and gas wells. It reduces expenses and saves time while preventing drilling complications. Since direct measurement of pore pressure in wellbores is costly and time-intensive, the ability to estimate it using empirical or machine learning models is beneficial. The present study aims to predict pore pressure using artificial neural network. The building and testing of artificial neural network are based on the data from five oil fields and several formations. The artificial neural network model is built using a measured dataset consisting of 77 data points of Pore pressure obtained from the modular formation dynamics tester. The input variables
... Show More