An experimental and theoretical analysis was conducted for simulation of open circuit cross flow heat
exchanger dynamics during flow reduction transient in their secondary loops. Finite difference
mathematical model was prepared to cover the heat transfer mechanism between the hot water in the
primary circuit and the cold water in the secondary circuit during transient course. This model takes under
consideration the effect of water heat up in the secondary circuit due to step reduction of its flow on the
physical and thermal properties linked to the parameters that are used for calculation of heat transfer
coefficients on both sides of their tubes. Computer program was prepared for calculation purposes which
cover all the variables that affect such type of transient mechanisms. The effect of the power density in
the primary circuit and the water flow reduction percentage on the average temperature build up of the
water in the primary circuit was investigated. The elapsed time required for the primary circuit average
temperature to reach a steady state value was also calculated. These calculations were supported with
experimental measurements conducted on a standard cross flow heat exchanger apparatus. The
experimental results were compared with the theoretical results for certain power density value at
different flow reduction percentages which show a reliable agreement. This relative agreement was
necessary to consider the mathematical model with certain assurance for calculating transient parameters
for higher power densities that are out of apparatus ranges. The results proved that water average
temperature build up in the primary circuit has sharp tendency when the percentage of flow reduction in
the secondary circuit reach 25% of its nominal values.
This paper is devoted to an inverse problem of determining discontinuous space-wise dependent heat source in a linear parabolic equation from the measurements at the final moment. In the existing literature, a considerably accurate solution to the inverse problems with an unknown space-wise dependent heat source is impossible without introducing any type of regularization method but here we have to determine the unknown discontinuous space-wise dependent heat source accurately using the Haar wavelet collocation method (HWCM) without applying the regularization technique. This HWCM is based on finite-difference and Haar wavelets approximation to the inverse problem. In contrast to othe
Background: The change in the concepts of cavity preparation and the development of reliable adhesive materials lead to the development of alternative methods of caries removal. Chemo-mechanical caries removal (CMCR) involves the chemical softening of carious dentin, followed by its removal with manual excavation. The present study was conducted to evaluate clinically the efficiency of caries removal using a new chemo-mechanical agent (Papacarie) compared to the conventional drilling method in reduction of total bacterial count. Material and methods: The study is a split mouth design. The sample composes from sixty mandibular deciduous molars teeth in thirty children, between six to nine years of age with bilateral class I deep occlusal car
... Show MoreThe flow in a manifolds considered as an advanced problem in hydraulic engineering applications. The objectives of this study are to determine; the uniformity qn/q1 (ratio of the discharge at last outlet, qn to the discharge at first outlet, q1) and total head losses of the flow along straight and rectangular loop manifolds with different flow conditions. The straight pipes were with 18 m and 19 m long and with of 25.4 mm (1.0 in) in diameter each. While, the rectangular close loop configuration was with length of 19 m and with diameter of 25.4 mm (1.0 in) also. Constant head in the supply tank was used and the head is 2.10 m. It is found that outlets spacing and manifold configuration are the main factors aff
... Show MoreIn this paper, the general framework for calculating the stability of equilibria, Hopf bifurcation of a delayed prey-predator system with an SI type of disease in the prey population, is investigated. The impact of the incubation period delay on disease transmission utilizing a nonlinear incidence rate was taken into account. For the purpose of explaining the predation process, a modified Holling type II functional response was used. First, the existence, uniform boundedness, and positivity of the solutions of the considered model system, along with the behavior of equilibria and the existence of Hopf bifurcation, are studied. The critical values of the delay parameter for which stability switches and the nature of the Hopf bifurcat
... Show MoreDue to the fact that living organisms do not exist individually, but rather exist in clusters interacting with each other, which helps to spread epidemics among them. Therefore, the study of the prey-predator system in the presence of an infectious disease is an important topic because the disease affects the system's dynamics and its existence. The presence of the hunting cooperation characteristic and the induced fear in the prey community impairs the growth rate of the prey and therefore affects the presence of the predator as well. Therefore, this research is interested in studying an eco-epidemiological system that includes the above factors. Therefore, an eco-epidemiological prey-predator model incorporating predation fear and
... Show More<p>The objective of this paper is to study the dynamical behavior of an aquatic food web system. A mathematical model that includes nutrients, phytoplankton and zooplankton is proposed and analyzed. It is assumed that, the phytoplankton divided into two compartments namely toxic phytoplankton which produces a toxic substance as a defensive strategy against predation by zooplankton, and a nontoxic phytoplankton. All the feeding processes in this food web are formulating according to the Lotka-Volterra functional response. This model is represented mathematically by the set of nonlinear differential equations. The existence, uniqueness and boundedness of the solution of this model are investigated. The local and global stability
... Show More