Preferred Language
Articles
/
joe-2887
BEHAVIOR OF CONCRETE BEAMS REINFORCED IN SHEAR WITH CARBON FIBER REINFORCED POLYMER
...Show More Authors

Carbon fiber reinforced polymers (CFRP) were widely used in strengthening reinforced concrete members
in the last few years, these fibers consist mainly of high strength fibers which increase the member capacity in addition to changing the mode of failure of the reinforced concrete beams. Experimental and theoretical investigations were carried to find the behavior of reinforced concrete beams strengthened by CFRP in shear and bending. The experimental work included testing of 12 beams divided into 4 groups; each group contains 3 beams. The following parameters were taken into consideration: - Concrete crushing strength. - CFRP strengthening location (shear strengthening and both shear and flexure strengthening). Reinforced beams were simply supported subjected to two point loads. Each group consists of three beams; the first beam without CFRP, the second one, is strengthened with CFRP in shear and the third is strengthened with CFRP in both flexure and shear. Four groups with different crushing strength of (12, 20, 30 and 39 MPa). The CFRP sheets are attached externally.
It was found that in beam with low crushing strength loads transfer to the CFRP at early stages while in
those of high crushing strength, CFRP contribution only starts when full strength of the beam is fulfilled. A
full bond between CFRP sheets and the concrete is assumed in the theoretical analysis. Comparison between the theoretical and the experimental results revealed the validity of the numerical analysis and the developed methods such that there was a difference of 13% in the ultimate strength for the tested and analyzed beams.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Jan 01 2013
Journal Name
Journal Of Engineering
Numerical Prediction of Bond-Slip Behavior in Simple Pull-out Concrete Specimen
...Show More Authors

In this study the simple pullout concrete cylinder specimen reinforced by a single steel bar was analyzed for bond-slip behavior. Three-dimension nonlinear finite element model using ANSYS program was employed to study the behavior of bond between concrete and plain steel reinforcement. The ANSYS model includes eight-noded isoperimetric brick element (SOLID65) to model the concrete cylinder while the steel reinforcing bar was modeled as a truss member (LINK8). Interface element (CONTAC52) was used in this analysis to model the bond between concrete and steel bar. Material nonlinearity due to cracking and/or crushing of concrete, and yielding of the steel reinforcing bar were taken into consideration during the analysis. The accuracy of this

... Show More
Publication Date
Wed May 10 2023
Journal Name
Journal Of Engineering
Numerical Prediction of Bond-Slip Behavior in Simple Pull-Out Concrete Specimens
...Show More Authors

In this study the simple pullout concrete cylinder specimen reinforced by a single steel bar was analyzed for bond-slip behavior. Three-dimension nonlinear finite element model using ANSYS program was employed to study the behavior of bond between concrete and plain steel reinforcement. The ANSYS model includes eight-noded isoperimetric brick element (SOLID65) to model the concrete cylinder while the steel reinforcing bar was modeled as a truss member (LINK8). Interface element (CONTAC52) was used in this analysis to model the bond between concrete and steel bar. Material nonlinearity due to cracking and/or crushing of concrete, and yielding of the steel reinforcing bar were taken into consideration during the analysis. The accuracy of t

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Sat Aug 10 2019
Journal Name
Engineering, Technology & Applied Science Research
Performance of Segmental Post-Τensioned Concrete Beams Exposed to High Fire Temperature
...Show More Authors

The present study illustrates observations, record accurate description and discussion about the behavior of twelve tested, simply supported, precast, prestressed, segmental, concrete beams with different segment numbers exposed to high fire temperatures of 300°C, 500°C, and 700°C. The test program included thermal tests by using a furnace manufactured for this purpose to expose to high burning temperature (fire flame) nine beams which were loaded with sustaining dead load throughout the burning process. The beams were divided into three groups depending on the precast segments number. All had an identical total length of 3150mm but each had different segment number (9, 7, and 5 segments), in other words, different segment length

... Show More
View Publication Preview PDF
Crossref (6)
Crossref
Publication Date
Fri Mar 15 2024
Journal Name
Journal Of Baghdad College Of Dentistry
Assessment of the correlation between the tensile and diametrical compression strengths of 3D-printed denture base resin reinforced with ZrO2 nanoparticles
...Show More Authors

Background: The mechanical properties of 3D-printed denture base resins are crucial factors for determining the quality and performance of dentures inside a patient’s mouth. Tensile strength and diametral compressive strength are two properties that could play significant roles in assessing the suitability of a material. Although they measure different aspects of material behavior, a conceptual link exists between them in terms of overall material strength and resilience. Aim: This study aims to investigate the correlation between tensile strength and diametral compressive strength after incorporating 2% ZrO2 nanoparticles (NPs) by weight into 3D-printed denture base resin. Methods: A total of 40 specimens (20 dumbbell-shaped and

... Show More
Scopus (7)
Crossref (4)
Scopus Crossref
Publication Date
Tue Dec 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Effect of Adding Chopped Carbon Fiber (CCF) on the Improvement of Gypsum Plaster Characteristicssss
...Show More Authors
Abstract<p>The current work studies the effect of adding chopped carbon fiber (CCF) on gypsum plaster properties (precisely the compressive strength and the modulus of rupture). The research plan consists of using six mixes of gypsum plaster; these mixes are divided into two groups according to the (Water/Gypsum) ratios (0.5 & 0.6). Each group was divided into three subgroups according to CCF volume fraction (Vf): 0.0%, 0.2% and 0.4%. Three cubic (50×50×50) mm and three prismatic (40×40×160) mm samples were performed for each mix. It was found that, the addition of CCF to the gypsum plaster mixes increases both the compressive strength and the modulus of rupture for both (W/G) ratios, an</p> ... Show More
View Publication
Scopus (9)
Crossref (13)
Scopus Crossref
Publication Date
Wed Sep 22 2021
Journal Name
The Structural Design Of Tall And Special Buildings
Utilizing I‐shaped shear links as dampers to improve the behavior of concentrically braced frames
...Show More Authors

View Publication
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Wed Jun 30 2004
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Electrochemical Behavior of Phosphotized Reinforcing Steel in Concrete in Presence of Sugar Can Ash
...Show More Authors

View Publication Preview PDF
Publication Date
Tue Aug 03 2021
Journal Name
Key Engineering Materials
Study the Behavior of Castellated Steel Column Encasing by Different Reactive Powder Concrete Thickness with Laced Reinforcement
...Show More Authors

Castellated columns are structural members that are created by breaking a rolled column along the center-line by flame after that rejoining the equivalent halves by welding such that for better structural strength against axial loading, the total column depth is increased by around 50 percent. The implementation of these institutional members will also contribute to significant economies of material value. The main objectives of this study are to study the enhancement of the load-carrying capacity of castellated columns with encasement of the columns by Reactive Powder Concrete (RPC) and lacing reinforcement, and serviceability of the confined castellated columns. The Castellated columns with RPC and Lacing Reinforcement improve com

... Show More
View Publication
Scopus (1)
Crossref (2)
Scopus Crossref
Publication Date
Mon Aug 05 2024
Journal Name
Food And Bioprocess Technology
Development of an Innovative Reinforced Food Packaging Film Based on Corn Starch/Hydroxypropyl Methylcellulose/Nanocrystalline Cellulose Incorporated with Nanogel Containing Quercetin
...Show More Authors

View Publication
Scopus (10)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Fri Apr 01 2022
Journal Name
Journal Of Engineering
Effect of Distributing Steel Fibers on Some Properties of Slurry Infiltrated Fiber Concrete
...Show More Authors

The slurry infiltrated fiber concrete (SIFCON) is nowadays considered a special type of high fiber content concrete; it is high strength and high performance material. This paper investigates the effect of spread steel fiber into the slurry mortar on some properties of SIFCON. According to fiber distribution, two sets were used in this investigation. The first set consisted of randomly distributing fibers inside the slurry. The second set was by placing the fibers in an orderly manner inside the slurry. Crimped steel fibers with an aspect ratio of (60) were used. Two different volume fractions percentage of (7% and 9%) by volume of mold were used in both sets for this study. Also, a w/c ratio of (0.35) and superplasticiz

... Show More
View Publication Preview PDF
Crossref (9)
Crossref