Preferred Language
Articles
/
joe-2887
BEHAVIOR OF CONCRETE BEAMS REINFORCED IN SHEAR WITH CARBON FIBER REINFORCED POLYMER
...Show More Authors

Carbon fiber reinforced polymers (CFRP) were widely used in strengthening reinforced concrete members
in the last few years, these fibers consist mainly of high strength fibers which increase the member capacity in addition to changing the mode of failure of the reinforced concrete beams. Experimental and theoretical investigations were carried to find the behavior of reinforced concrete beams strengthened by CFRP in shear and bending. The experimental work included testing of 12 beams divided into 4 groups; each group contains 3 beams. The following parameters were taken into consideration: - Concrete crushing strength. - CFRP strengthening location (shear strengthening and both shear and flexure strengthening). Reinforced beams were simply supported subjected to two point loads. Each group consists of three beams; the first beam without CFRP, the second one, is strengthened with CFRP in shear and the third is strengthened with CFRP in both flexure and shear. Four groups with different crushing strength of (12, 20, 30 and 39 MPa). The CFRP sheets are attached externally.
It was found that in beam with low crushing strength loads transfer to the CFRP at early stages while in
those of high crushing strength, CFRP contribution only starts when full strength of the beam is fulfilled. A
full bond between CFRP sheets and the concrete is assumed in the theoretical analysis. Comparison between the theoretical and the experimental results revealed the validity of the numerical analysis and the developed methods such that there was a difference of 13% in the ultimate strength for the tested and analyzed beams.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu May 18 2023
Journal Name
Journal Of Engineering
Bearing Capacity of Shallow Footing on Compacted Filling Dune Sand Over Reinforced Gypseous Soil
...Show More Authors

Existence of these soils, sometimes with high gypsum content, caused difficult problems to the buildings and strategic projects due to dissolution and leaching of gypsum by the action of waterflow through soil mass. In this research, a new technique is adopted to investigate the performance of replacement and geosynthetic reinforcement materials to improve the gypseous soil behavior through experimential set up manufactured loaclally specially for this work. A series of tests were carried out using steel container (600*600*500) mm. A square footing (100*100) mm was placed at the center of the top surface of the bed soil. The results showed that the most effective thickness for the dune sand layer with geotextile at the interface, within

... Show More
View Publication Preview PDF
Crossref (8)
Crossref
Publication Date
Thu Aug 01 2019
Journal Name
International Journal Of Geomate
SERVICEABILITY AND DUCTILITY OF PARTIALLY PRESTRESSED CONCRETE BEAMS UNDER LIMITED CYCLES OF REPEATED LOADING
...Show More Authors

View Publication
Crossref (2)
Crossref
Publication Date
Tue Jan 01 2008
Journal Name
J Bagh College Of Dentistry
Assessment of consistency and compressive strength of glass ionomer reinforced by different amount of hydroxyapatite
...Show More Authors

Background: Glass ionomers have good biocompatibility and the ability to adhere to both enamel and dentin. However, they have certain demerits, mainly low tensile and compressive strengths. Therefore, this study was done to assess consistency and compressive strength of glass ionomer reinforced by different amount of hydroxyapatite. Materials and Methods: In this study hydroxyapatite materials were added to glass ionomer cement at different ratios, 10%, 15%, 20%, 25% and 30% (by weight). The standard consistency test described in America dental association (ADA) specification No. 8 was used, so that all new base materials could be conveniently mixed and the results would be of comparable value and the compressive strength test described by

... Show More
View Publication Preview PDF
Publication Date
Wed Jun 04 2025
Journal Name
Engineering, Technology & Applied Science Research
Investigating Fiber Reinforcement Effects on the Performance of Concrete Pavements under Repeated Load
...Show More Authors

Concrete pavements are essential to modern infrastructure, but their low tensile and flexural strengths can cause cracking and shrinkage. This study evaluates fiber reinforcement with steel and carbon fibers in various combinations to improve rigid pavement performance. Six concrete mixes were tested: a control mix with no fiber, a mix with 1% steel fiber (SF1%), a mix with 1% carbon fiber (CF1%), and three hybrid mixes with 1% fiber content: 0.75% steel /0.25% carbon fiber (SF0.75CF0.25), 0.25% steel /0.75% carbon fiber (SF0.25CF0.75), and 0.5% steel /0.5% carbon fiber ((SF0.5CF0.5). Laboratory experiments including compressive, flexural, and splitting tensile strength tests were conducted at 7, 28, and 90 days, while Finite Element Analys

... Show More
View Publication
Scopus Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Desalination And Water Treatment
Electrosorption of cadmium ions from the aqueous solution by a MnO2/carbon fiber composite electrode
...Show More Authors

The nanostructured MnO2 /carbon fiber (CF) composite electrode was prepared using the anodic electrodeposition process. The crystal structure and morphology of MnO2 particles were determined with X-ray diffraction and field-emission scanning electron microscopy. The electrosorptive properties of the prepared electrode were investigated in the removal of cadmium ions from aqueous solution, and the effect of pH, cell voltage, and ionic strength was optimized and modeled using the response surface methodology combined with Box–Behnken design. The results confirm that the optimum conditions to remove Cd(II) ions were: pH of 6.03, a voltage of 2.77 V, and NaCl concentration of 3 g/L. The experimental results showed a good fit for the Freundli

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Fri Jan 01 2016
Journal Name
Journal Of Engineering
Some Properties of Polymer Modified Self-Compacting Concrete Exposed to Kerosene and Gas Oil
...Show More Authors

This thesis aims to study the effect of addition polymer materials on mechanical properties of self-compacting concrete, and also to assess the influence of petroleum products (kerosene and gas oil) on mechanical properties of polymer modified self-compacting concrete (PMSCC) after different exposure periods of (30 ,60 ,90 ,and 180 days).

Two type of curing are used; 28 days in water for SCC and 2 days in water followed 26 days in air for PMSCC.

The test results show that the PMSCC (15% P/C ratio) which is exposed to oil products recorded a lower deterioration in compressive strength's values than reference concrete. The percentages of reduction in compressive strength values of PMSCC (15% P/C ratio) was

... Show More
View Publication Preview PDF
Publication Date
Tue Dec 05 2023
Journal Name
Engineering, Technology & Applied Science Research
Theoretical Analysis of Composite RC Beams with Pultruded GFRP Beams subjected to Impact Loading
...Show More Authors

Glass Fiber Reinforced Polymer (GFRP) beams have gained attention due to their promising mechanical properties and potential for structural applications. Combining GFRP core and encasing materials creates a composite beam with superior mechanical properties. This paper describes the testing encased GFRP beams as composite Reinforced Concrete (RC) beams under low-velocity impact load. Theoretical analysis was used with practical results to simulate the tested beams' behavior and predict the generated energies during the impact loading. The impact response was investigated using repeated drops of 42.5 kg falling mass from various heights. An analysis was performed using accelerometer readings to calculate the generalized inertial load. The in

... Show More
View Publication
Publication Date
Tue Dec 05 2023
Journal Name
Engineering, Technology & Applied Science Research
Theoretical Analysis of Composite RC Beams with Pultruded GFRP Beams subjected to Impact Loading
...Show More Authors

Glass Fiber Reinforced Polymer (GFRP) beams have gained attention due to their promising mechanical properties and potential for structural applications. Combining GFRP core and encasing materials creates a composite beam with superior mechanical properties. This paper describes the testing encased GFRP beams as composite Reinforced Concrete (RC) beams under low-velocity impact load. Theoretical analysis was used with practical results to simulate the tested beams' behavior and predict the generated energies during the impact loading. The impact response was investigated using repeated drops of 42.5 kg falling mass from various heights. An analysis was performed using accelerometer readings to calculate the generalized inertial load

... Show More
View Publication
Scopus (14)
Crossref (17)
Scopus Clarivate Crossref
Publication Date
Tue Sep 01 2009
Journal Name
Al-khwarizmi Engineering Journal
Corrosion and Galvanic behavior of Copper, Carbon steel and Zinc Couples in (3.5 %wt) Nacl Solution
...Show More Authors

The galvanic corrosion of the (Cu - Fe), (Cu - Zn) and (Fe - Zn) couples have been investigated in 3.5% NaCl solution, 40ºC, different velocities (Re = 5000, 10000 and 15000) and different area ratio’s of cathode to anode (AR= 0.5,1 and 2), by using commercial metal pipe (cylindrical tube).The Zero Resistance Ammeter has been used to measure the galvanic current (Ig) and galvanic potential (Eg) with time. The galvanic current density increases with increasing velocity (Re) and the area ratio (AR). The galvanic potential (Eg) is shifted to less negative with increasing velocity (Re) and the area ratio (AR). A statistical relations for the galvanic current density and galvanic potential as a function of (Re). and the area ratio had been

... Show More
View Publication Preview PDF
Publication Date
Sun Mar 31 2019
Journal Name
Association Of Arab Universities Journal Of Engineering Sciences
Behavior of Plain Concrete Beam Analyzed Using Extended Finite Element Method
...Show More Authors

In this study, plain concrete simply supported beams subjected to two points loading were analyzed for the flexure. The numerical model of the beam was constructed in the meso-scale representation of concrete as a two phasic material (aggregate, and mortar). The fracture process of the concrete beams under loading was investigated in the laboratory as well as by the numerical models. The Extended Finite Element Method (XFEM) was employed for the treatment of the discontinuities that appeared during the fracture process in concrete. Finite element method with the feature standard/explicitlywas utilized for the numerical analysis. Aggregate particles were assumedof elliptic shape. Other properties such as grading and sizes of the aggr

... Show More
Crossref