Brainstorming has been a common approach in many industries where the result is not always accurate, especially when procuring automobile spare parts. This approach was replaced with a scientific and optimized method that is highly reliable, hence the decision to optimize the inventory inflation budget based on spare parts and miscellaneous costs of the typical automobile industry. Some factors required to achieve this goal were investigated. Through this investigation, spare parts (consumables and non-consumables) were found to be mostly used in Innoson Vehicle Manufacturing (IVM), Nigeria but incorporated miscellaneous costs to augment the cost of spare parts. The inflation rate was considered first due to the market's price increase. Different types of vehicles were used to implement the Non-preemptive goal programming model and to predict the cost of procurement of the spare parts and miscellaneous and the profit for the current year. The result proved that the solution did not fully achieve the goals since the objective function is not equal to zero, but deviations for going below the profit goal and above the cost of procurement goal were significantly minimized.
This work has been done to prepare a series of new alkene compounds derived from 4-thiozolidinones by substituting different aldehydes, P-acetamido-phenol, and 2-mercapto-benzoimidazole, which were used as starting materials to form ester [I]a,b and then make hydrazides [II]a,b, which were used to prepare 1, 3, and 4-oxadiazoles [III]a,b, which were then used for prepared Schiff bases [IV]a-f, The next step was the synthesis of 4-thiazoldinone derivatives [V]a-f from Schiff bases. The final step was the synthesis of alkenes [VII]a-f, the prepared derivatives were identified with spectral methods (FT-IR, 1H-NMR, mass, and CHNS). The antibacterial activity of the prepared derivatives was evaluated against four types of bacteria, pos
... Show MoreBinary relations or interactions among bio-entities, such as proteins, set up the essential part of any living biological system. Protein-protein interactions are usually structured in a graph data structure called "protein-protein interaction networks" (PPINs). Analysis of PPINs into complexes tries to lay out the significant knowledge needed to answer many unresolved questions, including how cells are organized and how proteins work. However, complex detection problems fall under the category of non-deterministic polynomial-time hard (NP-Hard) problems due to their computational complexity. To accommodate such combinatorial explosions, evolutionary algorithms (EAs) are proven effective alternatives to heuristics in solvin
... Show MoreEarly detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze med
... Show MoreThis research theme of the pressures of work , which is one of the important topics in order to recognize the reality of( influencing the pressures of work in the performance of employees in the General Company for Vegetable Oil Industry in Baghdad )through the statement of the existence of the correlation and influence whether or not the statement of the strength of this relationship and its impact in the case of its existence has been provided as part of my Search for variables and their removal in front of the Sub- scientific aspect has been the distribution of the questionnaire on a sample of( 62) people working in the company Mint distributors on several sections where.
Formed resolution of two sets
... Show MoreA three-stage learning algorithm for deep multilayer perceptron (DMLP) with effective weight initialisation based on sparse auto-encoder is proposed in this paper, which aims to overcome difficulties in training deep neural networks with limited training data in high-dimensional feature space. At the first stage, unsupervised learning is adopted using sparse auto-encoder to obtain the initial weights of the feature extraction layers of the DMLP. At the second stage, error back-propagation is used to train the DMLP by fixing the weights obtained at the first stage for its feature extraction layers. At the third stage, all the weights of the DMLP obtained at the second stage are refined by error back-propagation. Network structures an
... Show MoreThe need for cloud services has been raised globally to provide a platform for healthcare providers to efficiently manage their citizens’ health records and thus provide treatment remotely. In Iraq, the healthcare records of public hospitals are increasing progressively with poor digital management. While recent works indicate cloud computing as a platform for all sectors globally, a lack of empirical evidence demands a comprehensive investigation to identify the significant factors that influence the utilization of cloud health computing. Here we provide a cost-effective, modular, and computationally efficient model of utilizing cloud computing based on the organization theory and the theory of reasoned action perspectives. A tot
... Show More