This work aims to study the exploding copper wire plasma parameters by optical emission spectroscopy. The emission spectra of the copper plasma have been recorded and analyzed The plasma electron temperature (Te), was calculated by Boltzmann plot, and the electron density (ne) calculated by using Stark broadening method for different copper wire diameter (0.18, 0.24 and 0.3 mm) and current
of 75A in distilled water. The hydrogen (Hα line) 656.279 nm was used to calculate the electron density for different wire diameters by Stark broadening. It was found that the electron density ne decrease from 22.4×1016 cm-3 to 17×1016 cm-3 with increasing wire diameter from 0.18 mm to 0.3 mm while the electron temperatures increase from 0.741 to 0.897 eV for the same wire diameters. The optical emission spectrum (OES) emitted from the plasma have Hα line, small peak at 590 nm corresponding to sodium and others peaks belong to Cu I. The relationship between the plasma electron temperature, emission line intensity and number density with the formed copper nanoparticles size and concentration were studied. It was found that the nanoparticles concentration increase with emission line intensity while its size decrease. It can be conclude the existence of a controlled relationship between the plasma parameters and the formed nanoparticles concentration and size.
وفقأ للدراسات السابقة تم تحضير ليكاند آزو جديد (ن-(3-اسيتايل-2-هيدروكسي-5-مثيل-فنيل)ن-(4-كاربوكسي-سايكلوهكسيل مثيل)-ملح الدايازونيوم) وبعد التحقق من الصيغة المقترحة وفق نتائج التحاليل وبعد استخدام الليكاند لتحضير سلسلة ن المعقدات باستخدام نسب مولية متساوية (1:1) من الليكاند وتفاعلها مع كل من املاح المنغنيز والكوبلت والنيكل والنحاس والخارصين وبعد التحقق وفق تقنيات التحاليل الطيفية والتشخيصية(الاشعة فوق البنف
... Show MoreElectrocoagulation process was employed for the treatment of river water flows in Iraq. In this study, a batch Electrocoagulation process was used to treat river water taken from Al - Qadisiyah water treatment plant. electrolysis time, voltage and inter-electrode spacing were the most important parameters to study . A statistical model was developed using the RSM model. The optimum condition after studying the parameter effect the process was 1 cm separating, 30 volts . The RSM model shows the ideal condition of removal for both the TSS and turbidity at 1 cm, 20 volts and 55 min.
A phytoremediation experiment was carried out with kerosene as a model for total petroleum hydrocarbons. A constructed wetland of barley was exposed to kerosene pollutants at varying concentrations (1, 2, and 3% v/v) in a subsurface flow (SSF) system. After a period of 42 days of exposure, it was found that the average ability to eliminate kerosene ranged from 56.5% to 61.2%, with the highest removal obtained at a kerosene concentration of 1% v/v. The analysis of kerosene at varying initial concentrations allowed the kinetics of kerosene to be fitted with the Grau model, which was closer than that with the zero order, first order, or second order kinetic models. The experimental study showed that the barley plant designed in a subsu
... Show MoreA phytoremediation experiment was carried out with kerosene as a model for total petroleum hydrocarbons. A constructed wetland of barley was exposed to kerosene pollutants at varying concentrations (1, 2, and 3% v/v) in a subsurface flow (SSF) system. After a period of 42 days of exposure, it was found that the average ability to eliminate kerosene ranged from 56.5% to 61.2%, with the highest removal obtained at a kerosene concentration of 1% v/v. The analysis of kerosene at varying initial concentrations allowed the kinetics of kerosene to be fitted with the Grau model, which was closer than that with the zero order, first order, or second order kinetic models. The experimental study showed that the barley plant designed in a subsu
... Show MoreThe activation energy and optical band gap of different regions (p-type) polysilicon have been measured. Both microscopic studies and current-voltage characteristics of diodes prepared on different surface regions were carried out. Comparison of diodes parameters and microscopic studies indicate that the type of angles between boundaries has a significant effect on diodes parameters while the boundary lengths per unit area has less effect. The mechanism of Al-interaction with grain boundaries and their intersecting points at different temperature were also studies. The X-ray fluorescence spectrometry has been used for detection of diffused A1%.
Influence of metal nanoparticles synthesized by microorganisms upon soil-borne microscopic fungus Aspergillus terreus K-8 was studied. It was established that the metal nanoparticles synthesized by microorganisms affect the enzymatic activity of the studied culture. Silver nanoparticles lead to a decrease in cellulase activity and completely suppress the amylase activity of the fungus, while copper nanoparticles completely inhibit the activity of both the cellulase complex and amylase. The obtained results imply that the large-scale use of silver and copper nanoparticles may disrupt biological processes in the soil and cause change in the physiological and biochemical state of soil-borne microorganisms as well.
This study includes adescription of Human serum Albumin by amodified using ion- exchange chromatography with manipulated comparison with cold ethanol precipitation method , It has been nticed that this procedure is superior orer the classical method . The Final yield by the new method 69.32% with purity of 83.42% compared with cohn which yield 60.30 % with purity of 80.7 % . The new method prored that it suitable for the pusi Fication of such material because it yield no precipitation material and it increases the Final yield of albumin solutions . • Human serum Albumin . • Albumin purification . • Ion – exchange chromatography . • Human plasma . • Albumin extraction .
This study investigated the effect of applying an external magnetic field on the characteristics of laser-induced plasma, such as its parameters plasma, magnetization properties, emission line intensities, and plasma coefficients, for plasma induced from zinc oxide: aluminum composite (ZO:AL) at an atomic ratio of 0.3 %. Plasma properties include magnetization and emission line intensities. The excitation was done by a pulsed laser of Nd:YAG with 400 mJ energy at atmospheric pressure. Both the electron temperature and number density were determined with the help of the Stark effect principle and the Boltzmann-Plot method. There was a rise in the amount of (ne) and (Te) that was produced
... Show MoreTo evaluate impact the difference in stages ofage and related incidence of hemodialysis patients.Two hundred and fifty patients undergoing hemodialysis were collected from general hospital in Baghdad city /Iraq. The samples with renal failure before hemodialysis were divided into (138) male,( 112)female. The sera were separated from samples to physiological investigation. We found that renal failure was more predominant among the patients ages group ranging from (51-70) years old. The results shows A significant increase in the levels of urea, creatinine, in younger patients (≤ 30 years) when compared with older patients (>70 years). Furthermore a significant decrease in serum levels of total protein in patients in older patients (>7
... Show MoreThe optical detectors which had been used in medical applications, and especially in radioactive treatments, need to be modified studied for the effects of radiations on them. This study included preparation of the MnS thin films in a way that vacuum thermal evaporation process at room temperature 27°C with thickness (400+-10nm) nm and a sedimentation rate of 0.39nm/sec on glass floors. The thin films prepared as a detector and had to be treated with neutron irradiation to examine the results gained from this process. The results decay X-ray (XRD) showed that all the prepared thin films have a multi-crystalline structure with the dominance of the direction (111), the two samples were irradiated with a neutron irradiation source (241Am-9Be)
... Show More