This work aims to study the exploding copper wire plasma parameters by optical emission spectroscopy. The emission spectra of the copper plasma have been recorded and analyzed The plasma electron temperature (Te), was calculated by Boltzmann plot, and the electron density (ne) calculated by using Stark broadening method for different copper wire diameter (0.18, 0.24 and 0.3 mm) and current
of 75A in distilled water. The hydrogen (Hα line) 656.279 nm was used to calculate the electron density for different wire diameters by Stark broadening. It was found that the electron density ne decrease from 22.4×1016 cm-3 to 17×1016 cm-3 with increasing wire diameter from 0.18 mm to 0.3 mm while the electron temperatures increase from 0.741 to 0.897 eV for the same wire diameters. The optical emission spectrum (OES) emitted from the plasma have Hα line, small peak at 590 nm corresponding to sodium and others peaks belong to Cu I. The relationship between the plasma electron temperature, emission line intensity and number density with the formed copper nanoparticles size and concentration were studied. It was found that the nanoparticles concentration increase with emission line intensity while its size decrease. It can be conclude the existence of a controlled relationship between the plasma parameters and the formed nanoparticles concentration and size.
This study was conducted to determine the ability of water treatment system (Vortisand) to reduce some chemical and physical properties for tigris river raw water, It consisted of turbidity, electrical conductivity, pH, total hardness, calcium Hardness as well as temperature in order to determine the unit`s efficiency for reducing their concentration as compared to those in the water produced by some classical potable water projects (Dora and Wathba) in Baghdad. Samples were collected during the cold months (December 2016 and January 2017) and during the hot months (May and June 2017). The results showed that this system has the ability to reduce some properties such as turbidity, the values were 215NTU in raw water and decreased to NTU
... Show MoreCrop yield prediction is a critical measurement, especially in the time when parts of the world are suffering from farming issues. Yield forecasting gives an alert regarding economic trading, food production monitoring, and global food security. This research was conducted to investigate whether active optical sensors could be utilized for potato (Solanum tuberosum L.) yield prediction at the mid.le of the growing season. Three potato cultivars (Russet Burbank, Superior, and Shepody) were planted and six rates of N (0, 56, 112, 168, 224, and 280 kg ha−1), ammonium sulfate, which was replaced by ammonium nitrate in the 2nd year, were applied on 11 sites in a randomized complete block design, with four replications. Normalized difference ve
... Show MoreAbstract: In this work we demonstrate and investigate the optical pulse propagation in a photonic band gap fiber Bragg grating (FBG). The light propagates in opposite direction in FBG is explained and discussed by a Coupled Mode Theory (CMT). The photonic band gap (stop band gap) is created by fabricated, a Bragg grating in optical fiber. The results show the pulse spectrum falls entirely within the stop band gap, the entire pulse is reflected by the grating, while when the pulse spectrum is outside the stop band gap the pulses will transmitted through the grating. The group velocity (VG) becomes zero at the edges of the stop band and group velocity dispersion β2 is anomalous on the shorter side of stop band gap whereas β2 for uniform fi
... Show MoreNitrogen (N) fertilizer rate is important for high yield and good quality of potato tubers. In this dissertation, I seek to study the response of different potato cultivars under different N fertilizer rates and how that can impact tuber quality, examine the performance of active optical sensors in improving a potato yield prediction algorithm, and evaluate the ability of active optical sensors (GreenSeeker (GS) and Crop Circle (CC)) to optimize a N recommendation algorithm that can be used by potato growers in Maine. This research was conducted at 11 sites over a period of two years (2018–2019) in Aroostook County, Maine; all sites depended on a rainfed system. Three potato cultivars, Russet Burbank, Superior, and Shepody, were planted u
... Show MoreIn this work, an optical fiber biomedical sensor for detecting the ratio of the hemoglobin in the blood is presented. A surface plasmon resonance (SPR)-based coreless optical fiber was developed and implemented using single- and multi-mode optical fibers. The sensor is also utilized to evaluate refractive indices and concentrations of hemoglobin in blood samples, with 40 nm thickness of (20 nm Au and 20 nm Ag) to increase the sensitivity. It is found in practice that when the sensitive refractive index increases, the resonant wavelength increases due to the decrease in energy.
Polyaniline (PANI) and Ag/PANI nanocomposite thin films have prepared by microwave induced plasma. The Ag powder of average particle size of 50 nm, were used to prepare Ag/PANI nanocomposite thin films. The Ag/PANI nanocomposite thin films prepared by polymerization in plasma and characterized by UV-VIS, FTIR, AFM and SEM to study the effect of silver nanoparticles on the optical properties, morphology and structure of the thin films. The optical properties studies showed that the energy band gap of the Ag/PANI (5%wt silver) decreased from 3.6 to 3.2 eV, where the substrate location varied from 4.4 to 3.4 cm from the axis of the cylindrical plasma chamber. Also the optical energy gap decreased systematically from 3.3 to 3 eV with increas
... Show MoreWhile traditional energy sources such as oil, coal, and natural gas drive economic growth, they also seriously affect people’s health and the environment. Renewable energies (RE) are presently seen as an efficient choice for attaining long-term sustainability in development. They provide an adequate response to climate change and supply sufficient electricity. The current situation in Iraq results from a decades-long scarcity of reliable electricity, which has impacted various industries, including agriculture. There are diverse prospects for using renewable energy sources to address the present power crisis. The economic and environmental impacts of renewable energy systems were investigated in this study by using the solar pumpi
... Show More