This study involved preparation of Graphene oxide (GO) and reduced graphene oxide (RGO) using Hummer method and chemical method respectively. These carbon nanomaterials were used as starting material to make novel functionalize with thiocarbohydrazide (TCH) which was prepared by reacting CS2 with hydrazine to form GO or RGO- 4-amino,5-substituted 1H,1,2,4 Triazole 5(4H) thion (ASTT) ,(GOT) and( RGOT) respectively via cyclocondensation reaction. Also MnO2 nanorod was prepared to form hybridized with GOT and RGOT. A commercial multiwall carbon nanotube (MWCNT) and functionalization with carboxylic groups' (f-MWCNT) and its nanocomposite with GOT were also prepared. All carbon nanomaterials were characterized with different techniques such as Fourier transform infrared (FT-IR), X-ray diffraction (XRD), atomic force microscope (AFM) scanning electron microscope (SEM) and elemental analysis. XRD showed presence diffraction peak at 11.95 for GO and this diffraction disappeared for RGO. Diffraction peak of crystal planes for MnO2 matched well with standard data. The diameter of MnO2 nanotubes was determined using Debye scherrer equation and found to be 11.6nm corresponding with AFM image. The AFM images proves the growth of MnO2 nanotubes from the MnO2 nano spherical shape these images are very rare in the scientific literature. The real permittivity (ε'), imaginary permittivity (ε") and a.c conductivity (S.m-1) of all nanomaterials were measured by LCR meter at frequencies ranging from 100Hz to 100 KHz. The result showed the values of the real permittivity for RGO higher than GO at all frequencies while RGOTM have lower values of real permittivity at low frequency due to presence of MnO2 nanorods which affected the accumulation of charges. The imaginary permittivity of f-MWCNT-GOT and RGO were at low frequency higher than the real values due to their high conductivity. Also imaginary permittivity of f-MWCNT-GOT nanocomposites at all frequencies higher than real which have negative values at frequencies in range 400 to 4KHz .a.c conductivity for RGO and f-MWCNT-GOT nanocomposite have higher values compared with all prepared nanomaterial, at the same time the modified WE with f-MWCNT-GOT nanocomposite show the best detection limits in comparison with other prepared modified WE. Also the prepared nanomaterials were used to study novel sensing system and develop electrochemical sensor capable of detecting some of antibiotics such as Ampicillin (AMP), Amoxilline (AMOX) which have β-lactam ring and Tetracycline (TET) which contains four hydrocarbon rings using cyclic voltammetry (CV) technique via modification of the working electrode of the SPCE with the prepared nanomaterial by deposition process. f-MWCNT-GOT/SPCE nanocomposite showed higher electrochemical reaction response and lower limit of detection. The working electrodes surfaces were studied with AFM and SEM techniques. The value of apparent heterogeneous electron transfer rate constant (ks) was determined using the value of electron transfer coefficient (α) and the result showed that f-MWCNT-GOT/SPCE showed higher (ks).
Image processing applications are currently spreading rapidly in industrial agriculture. The process of sorting agricultural fruits according to their color comes first among many studies conducted in industrial agriculture. Therefore, it is necessary to conduct a study by developing an agricultural crop separator with a low economic cost, however automatically works to increase the effectiveness and efficiency in sorting agricultural crops. In this study, colored pepper fruits were sorted using a Pixy2 camera on the basis of algorithm image analysis, and by using a TCS3200 color sensor on the basis of analyzing the outer surface of the pepper fruits, thus This separation process is done by specifying the pepper according to the color of it
... Show Moreحضرت معقدات كل من الفنادايل, الخارصين, النحاس والكادميوم بتكافؤهم الثنائي والذهب بتكافؤه الثلاثي بأستخدام صبغة ازوجديدة (6،4،2-ثلاثي هيدروكسي-3-((3-هيدروكسي فنيل) ثنائي زينيل ) فنيل ) ايثان-1-اون المحضرة من ملح الديازونيوم مع ٦,٤,٢- ثلاثي هيدروكسي اسيتوفينون بعد عزل (E)-1-(2,4,6-trihydroxy-3-((3-hydroxyphenyl)diazenyl)phenyl)ethan-1-one تم تشخيصها بواسطة الطرق الطيفية المتاحة والتقنيات التشخيصية لكل من التحليل الدقيق للعناصرواطياف كل من ال
... Show MoreEnergy savings are very common in IoT sensor networks because IoT sensor nodes operate with their own limited battery. The data transmission in the IoT sensor nodes is very costly and consume much of the energy while the energy usage for data processing is considerably lower. There are several energy-saving strategies and principles, mainly dedicated to reducing the transmission of data. Therefore, with minimizing data transfers in IoT sensor networks, can conserve a considerable amount of energy. In this research, a Compression-Based Data Reduction (CBDR) technique was suggested which works in the level of IoT sensor nodes. The CBDR includes two stages of compression, a lossy SAX Quantization stage which reduces the dynamic range of the
... Show MoreSimulation of the Linguistic Fuzzy Trust Model (LFTM) over oscillating Wireless Sensor Networks (WSNs) where the goodness of the servers belonging to them could change along the time is presented in this paper, and the comparison between the outcomes achieved with LFTM model over oscillating WSNs with the outcomes obtained by applying the model over static WSNs where the servers maintaining always the same goodness, in terms of the selection percentage of trustworthy servers (the accuracy of the model) and the average path length are also presented here. Also in this paper the comparison between the LFTM and the Bio-inspired Trust and Reputation Model for Wireless Sensor Network
... Show MoreWireless Sensor Networks (WSNs) are promoting the spread of the Internet for devices in all areas of
life, which makes it is a promising technology in the future. In the coming days, as attack technologies become
more improved, security will have an important role in WSN. Currently, quantum computers pose a significant
risk to current encryption technologies that work in tandem with intrusion detection systems because it is
difficult to implement quantum properties on sensors due to the resource limitations. In this paper, quantum
computing is used to develop a future-proof, robust, lightweight and resource-conscious approach to sensor
networks. Great emphasis is placed on the concepts of using the BB8
A high sensitivity, low power and low cost sensor has been developed for photoplethysmography (PPG) measurement. The PPG principle was applied to follow the dilatation and contraction of skin blood vessels during the cardiac cycle. A standard light emitting diodes (LEDs) has been used as a light emitter and detector, and in order to reduce the space, cost and power, the classical analogue-to-digital converters (ADCs) replaced by the pulse-based signal conversion techniques. A general purpose microcontroller has been used for the implementation of measurement protocol. The proposed approach leads to better spectral sensitivity, increased resolution, reduction in cost, dimensions and power consumption. The basic sensing configuration prese
... Show MoreElectrochemical Grinding (ECG) process is a mechanically assisted electrochemical process for material processing. The process is able to successfully machine electrically conducting harder materials at faster rate with improved surface finish and dimensional control. This research studies the effect of applied current, electrolyte concentration, spindle speed and the gap between workpiece and tool on hardness and material removal rate during electrochemical grinding for stainless steel 316. The characteristic features of the electrochemical grinding process are explored through Taguchi-design-based experimental studies. The better hardness can be obtained at 10 A of the current, 150 g/l of the electrolyte concentration, 0.3 mm of gap an
... Show MoreCentral and Eastern European Online Library - CEE journals, documents, articles, periodicals, books available online for download, Zeitschrfitendatenbank, Online Zeitschriften, Online Zeitschriftendatenbank
A competitive adsorption of Cu2+, Ni2+, and Cd2+ ions from a synthetic wastewater onto nanomaterial was studied.(Fe3O4) nanoparticles obtained from US Research Nanomaterials, Inc., Houston, TX 77084, (USA), was used as nanosorbent. Experimental parameters included pH, initial metal concentrations, and temperature were studied for nanosorbent. The uptake capacity 11.5, 6.07 and 11.1 mg/g for Cu2+, Ni2+and Cd2+, respectively, onto nanosorbent . The optimum pH values was 6 and the contact time was 50 min. for Cu2+, Ni2+and Cd2+, respectively. The equilibrium isotherm for
... Show More