Preferred Language
Articles
/
ehZCSYcBVTCNdQwCIkIg
Developing models to predicting the effect of crises on construction projects using MLR technique
...Show More Authors

Scopus Crossref
View Publication
Publication Date
Mon Mar 07 2022
Journal Name
Construction Research Congress 2022
Annual Revenue’s Influence on the Safety Performance of Construction Firms
...Show More Authors

View Publication
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Fri Jan 04 2019
Journal Name
Journal Of Planner And Development
Impact of D.B.M. Best practices on Community Rehabilitation Projects
...Show More Authors

View Publication Preview PDF
Publication Date
Tue Dec 01 2009
Journal Name
Journal Of Economics And Administrative Sciences
Using Artificial Neural Network Models For Forecasting & Comparison
...Show More Authors

The Artificial Neural Network methodology is a very important & new subjects that build's the models for Analyzing, Data Evaluation, Forecasting & Controlling without depending on an old model or classic statistic method that describe the behavior of statistic phenomenon, the methodology works by simulating the data to reach a robust optimum model that represent the statistic phenomenon & we can use the model in any time & states, we used the Box-Jenkins (ARMAX) approach for comparing, in this paper depends on the received power to build a robust model for forecasting, analyzing & controlling in the sod power, the received power come from

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Oct 01 2023
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
Intelligence framework dust forecasting using regression algorithms models
...Show More Authors

<span>Dust is a common cause of health risks and also a cause of climate change, one of the most threatening problems to humans. In the recent decade, climate change in Iraq, typified by increased droughts and deserts, has generated numerous environmental issues. This study forecasts dust in five central Iraqi districts using machine learning and five regression algorithm supervised learning system framework. It was assessed using an Iraqi meteorological organization and seismology (IMOS) dataset. Simulation results show that the gradient boosting regressor (GBR) has a mean square error of 8.345 and a total accuracy ratio of 91.65%. Moreover, the results show that the decision tree (DT), where the mean square error is 8.965, c

... Show More
View Publication
Scopus (3)
Scopus Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Proceeding Of The 1st International Conference On Advanced Research In Pure And Applied Science (icarpas2021): Third Annual Conference Of Al-muthanna University/college Of Science
Dimensional analysis of predicting the removal of chemical oxygen demand from domestic wastewater using moving bed biofilm reactor
...Show More Authors

Municipal wastewater sources are becoming increasingly important for reuse, for irrigation purposes, so they must be treated to meet environmentally friendly local or global standards. The aim of this study is to establish, calibrate, and validate a model for predicting chemical oxygen demand for the pilot plant of mobile biofilm reactors operating from municipal wastewater in Maaymyrh located in Hilla city Using the approach of dimensional analysis. The approach of Buckingham's theorem was used to derive a model of dimensional analysis design for the forecast of (COD) in the pilot plant. The effluent concentration (COD) It has been derived as a result of the influential concentration of (COD), dissolved oxygen (DO), volume of pilot plant

... Show More
View Publication
Scopus Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Periodicals Of Engineering And Natural Sciences
Comparison between the estimated of nonparametric methods by using the methodology of quantile regression models
...Show More Authors

This paper study two stratified quantile regression models of the marginal and the conditional varieties. We estimate the quantile functions of these models by using two nonparametric methods of smoothing spline (B-spline) and kernel regression (Nadaraya-Watson). The estimates can be obtained by solve nonparametric quantile regression problem which means minimizing the quantile regression objective functions and using the approach of varying coefficient models. The main goal is discussing the comparison between the estimators of the two nonparametric methods and adopting the best one between them

Scopus
Publication Date
Mon Jan 01 2024
Journal Name
The International Journal Of Central Banking
USING SOME NONPARAMETRIC ESTIMATORS OF THE ERROR CORRECTION MODEL TO MEASURE THE EFFECT OF CHANGES IN BANK DEPOSITS ON THE MONEY SUPPLY
...Show More Authors

In this paper, the effect of changes in bank deposits on the money supply in Iraq was studied by estimating the error correction model (ECM) for monthly time series data for the period (2010-2015) . The Philips Perron was used to test the stationarity and also we used Engle and Granger to test the cointegration . we used cubic spline and local polynomial estimator to estimate regression function .The result show that local polynomial was better than cubic spline with the first level of cointegration.

View Publication Preview PDF
Publication Date
Sun Feb 01 2026
Journal Name
Journal Of Structural Design And Construction Practice
Strategies to Achieve Professional Workforce Maturity in Construction
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Thu Feb 19 2026
Journal Name
Journal Of Physical Education
The Effect of Using Especial Exercises Suggested for Developing of Accuracy Direction by Fencing in Foil for the Players of the National Team of the Young who Handicap
...Show More Authors

View Publication
Publication Date
Sun Apr 30 2023
Journal Name
Journal Européen Des Systèmes Automatisés
Developing Multiple-Actuator Pneumatic Circuits Using the Karnaugh Maps Designing PLC Controlled
...Show More Authors

View Publication
Scopus (1)
Scopus Crossref