Human serum albumin (HSA) nanoparticles have been widely used as versatile drug delivery systems for improving the efficiency and pharmaceutical properties of drugs. The present study aimed to design HSA nanoparticle encapsulated with the hydrophobic anticancer pyridine derivative (2-((2-([1,1'-biphenyl]-4-yl)imidazo[1,2-a]pyrimidin-3-yl)methylene)hydrazine-1-carbothioamide (BIPHC)). The synthesis of HSA-BIPHC nanoparticles was achieved using a desolvation process. Atomic force microscopy (AFM) analysis showed the average size of HSA-BIPHC nanoparticles was 80.21 nm. The percentages of entrapment efficacy, loading capacity and production yield were 98.11%, 9.77% and 91.29%, respectively. An In vitro release study revealed that HSA-BIPHC nanoparticles displayed fast dissolution at pH 7.4 compared to pH 3.4. They have also showed a higher cytotoxic activity against MCF-7 human breast cancer cells. The possible binding of the BIPHC into the tyrosine threonine kinase (TTK) was studied using molecular modeling. The findings of this study introduced a promising candidate model of HSA nanoparticles for delivering of BIPHC anticancer drug. These novel nanoparticles are characterized by their ability to carry a hydrophobic BIPHC agent and control drug release with improved targeting of breast cancer cells.
Background: Piezosurgery improved the split approach by making it safer, easier, and less prone to complications when treating extremely atrophic crests. Densah drills, with their unique design, expand the ridge by densifying bone in a reverse, non-cutting mode. Objective: To assess the effectiveness of sagittal piezosurgery, which involves cutting bone to the full implant depth and then expanding it using osseodensification drills. We use this technique to expand narrow alveolar bones and simultaneously place dental implants in the maxillary and mandibular arches. Methods: Fourteen patients received 31 dental implants. The maxillary arch received 19, and the mandible received 12 dental implants. This study will include patients who
... Show More
... Show MoreIn this paper we proposed a new method for selecting a smoothing parameter in kernel estimator to estimate a nonparametric regression function in the presence of missing values. The proposed method is based on work on the golden ratio and Surah AL-E-Imran in the Qur'an. Simulation experiments were conducted to study a small sample behavior. The results proved the superiority the proposed on the competition method for selecting smoothing parameter.
Explainable Artificial Intelligence (XAI) techniques enable transparency and trust in automated visual inspection systems by making black-box machine learning models understandable. While XAI has been widely applied, prior reviews have not addressed the specific demands of industrial and medical inspection tasks. This paper reviews studies applying XAI techniques to visual inspection across industrial and medical domains. A systematic search was conducted in IEEE Xplore, Scopus, PubMed, arXiv, and Web of Science for studies published between 2014 and 2025, with inclusion criteria requiring the application of XAI in inspection tasks using public or domain-specific datasets. From an initial pool of studies, 75 were included and categorized in
... Show MoreWith the increasing reliance on microgrids as flexible and sustainable solutions for energy distribution, securing decentralized electricity grids requires robust cybersecurity strategies tailored to microgrid-specific vulnerabilities. The research paper focuses on enhancing detection capabilities and response times in the face of coordinated cyber threats in microgrid systems by implementing advanced technologies, thereby supporting decentralized operations while maintaining robust system performance in the presence of attacks. It utilizes advanced power engineering techniques to strengthen cybersecurity in modern power grids. A real-world CPS testbed was utilized to simulate the smart grid environment and analyze the impact of cyberattack
... Show MoreA method has been demonstrated to synthesise effective zeolite membranes from existing crystals without a hydrothermal synthesis step.
In this paper, a robust adaptive sliding mode controller is designed for a mobile platform trajectory tracking. The mobile platform is an example of a nonholonomic mechanical system. The presence of holonomic constraints reduces the number of degree of freedom that represents the system model, while the nonholonomic constraints reduce the differentiable degree of freedom. The mathematical model was derived here for the mobile platform, considering the existence of one holonomic and two nonholonomic constraints imposed on system dynamics. The partial feedback linearization method was used to get the input-output relation, where the output is the error functions between the position of a certain point on the platform
... Show More