In this paper, a method based on modified adomian decomposition method for solving Seventh order integro-differential equations (MADM). The distinctive feature of the method is that it can be used to find the analytic solution without transformation of boundary value problems. To test the efficiency of the method presented two examples are solved by proposed method.
In this paper, a sufficient condition for stability of a system of nonlinear multi-fractional order differential equations on a finite time interval with an illustrative example, has been presented to demonstrate our result. Also, an idea to extend our result on such system on an infinite time interval is suggested.
The purpose of this research is to implement the orthogonal polynomials associated with operational matrices to get the approximate solutions for solving two-dimensional elliptic partial differential equations (E-PDEs) with mixed boundary conditions. The orthogonal polynomials are based on the Standard polynomial (
This manuscript presents several applications for solving special kinds of ordinary and partial differential equations using iteration methods such as Adomian decomposition method (ADM), Variation iterative method (VIM) and Taylor series method. These methods can be applied as well as to solve nonperturbed problems and 3rd order parabolic PDEs with variable coefficient. Moreover, we compare the results using ADM, VIM and Taylor series method. These methods are a commination of the two initial conditions.
In this paper the oscillation criterion was investigated for all solutions of the third-order half linear neutral differential equations. Some necessary and sufficient conditions are established for every solution of (a(t)[(x(t)±p(t)x(?(t) ) )^'' ]^? )^'+q(t) x^? (?(t) )=0, t?t_0, to be oscillatory. Examples are given to illustrate our main results.
This paper is concerned with the oscillation of all solutions of the n-th order delay differential equation . The necessary and sufficient conditions for oscillatory solutions are obtained and other conditions for nonoscillatory solution to converge to zero are established.
In this paper, the author established some new integral conditions for the oscillation of all solutions of nonlinear first order neutral delay differential equations. Examples are inserted to illustrate the results.
In this paper we use Bernstein polynomials for deriving the modified Simpson's 3/8 , and the composite modified Simpson's 3/8 to solve one dimensional linear Volterra integral equations of the second kind , and we find that the solution computed by this procedure is very close to exact solution.
In this work, satellite images for Razaza Lake and the surrounding area
district in Karbala province are classified for years 1990,1999 and
2014 using two software programming (MATLAB 7.12 and ERDAS
imagine 2014). Proposed unsupervised and supervised method of
classification using MATLAB software have been used; these are
mean value and Singular Value Decomposition respectively. While
unsupervised (K-Means) and supervised (Maximum likelihood
Classifier) method are utilized using ERDAS imagine, in order to get
most accurate results and then compare these results of each method
and calculate the changes that taken place in years 1999 and 2014;
comparing with 1990. The results from classification indicated that
This paper is dealing with non-polynomial spline functions "generalized spline" to find the approximate solution of linear Volterra integro-differential equations of the second kind and extension of this work to solve system of linear Volterra integro-differential equations. The performance of generalized spline functions are illustrated in test examples
Nonlinear differential equation stability is a very important feature of applied mathematics, as it has a wide variety of applications in both practical and physical life problems. The major object of the manuscript is to discuss and apply several techniques using modify the Krasovskii's method and the modify variable gradient method which are used to check the stability for some kinds of linear or nonlinear differential equations. Lyapunov function is constructed using the variable gradient method and Krasovskii’s method to estimate the stability of nonlinear systems. If the function of Lyapunov is positive, it implies that the nonlinear system is asymptotically stable. For the nonlinear systems, stability is still difficult even though
... Show More