Preferred Language
Articles
/
cxdlFo8BVTCNdQwCPVtH
Modification Adomian Decomposition Method for solving Seventh OrderIntegro-Differential Equations
...Show More Authors

In this paper, a method based on modified adomian decomposition method for solving Seventh order integro-differential equations (MADM). The distinctive feature of the method is that it can be used to find the analytic solution without transformation of boundary value problems. To test the efficiency of the method presented two examples are solved by proposed method.

View Publication
Publication Date
Fri Dec 30 2022
Journal Name
Iraqi Journal Of Science
The Operational Matrices Methods for Solving Falkner-Skan Equations
...Show More Authors

     The method of operational matrices is based on the Bernoulli and Shifted Legendre polynomials which is used to solve the Falkner-Skan equation. The nonlinear differential equation converting to a system of nonlinear equations is solved using Mathematica®12, and the approximate solutions are obtained. The efficiency of these methods was studied by calculating the maximum error remainder ( ), and it was found that their efficiency increases as  increases. Moreover, the obtained approximate solutions are compared with the numerical solution obtained by the fourth-order Runge-Kutta method (RK4), which gives  a good agreement.

View Publication
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Sat Oct 01 2016
Journal Name
International Journal Of Pure And Apllied Mathematics
A SEMI ANALYTICAL ITERATIVE TECHNIQUE FOR SOLVING DUFFING EQUATIONS
...Show More Authors

View Publication
Crossref (13)
Crossref
Publication Date
Sun Sep 05 2010
Journal Name
Baghdad Science Journal
Volterra Runge- Kutta Methods for Solving Nonlinear Volterra Integral Equations
...Show More Authors

In this paper Volterra Runge-Kutta methods which include: method of order two and four will be applied to general nonlinear Volterra integral equations of the second kind. Moreover we study the convergent of the algorithms of Volterra Runge-Kutta methods. Finally, programs for each method are written in MATLAB language and a comparison between the two types has been made depending on the least square errors.

View Publication Preview PDF
Crossref
Publication Date
Fri May 01 2020
Journal Name
Journal Of Physics: Conference Series
New Approach for Solving (1+1)-Dimensional Differential Equation
...Show More Authors

View Publication Preview PDF
Scopus (18)
Crossref (8)
Scopus Crossref
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Approximated Methods for Linear Delay Differential Equations Using Weighted Residual Methods
...Show More Authors

The main work of this paper is devoted to a new technique of constructing approximated solutions for linear delay differential equations using the basis functions power series functions with the aid of Weighted residual methods (collocations method, Galerkin’s method and least square method).

View Publication Preview PDF
Crossref
Publication Date
Wed Mar 01 2023
Journal Name
Baghdad Science Journal
Traveling Wave Solutions of Fractional Differential Equations Arising in Warm Plasma
...Show More Authors

This paper aims to study the fractional differential systems arising in warm plasma, which exhibits traveling wave-type solutions. Time-fractional Korteweg-De Vries (KdV) and time-fractional Kawahara equations are used to analyze cold collision-free plasma, which exhibits magnet-acoustic waves and shock wave formation respectively. The decomposition method is used to solve the proposed equations. Also, the convergence and uniqueness of the obtained solution are discussed. To illuminate the effectiveness of the presented method, the solutions of these equations are obtained and compared with the exact solution. Furthermore, solutions are obtained for different values of time-fractional order and represented graphically.

View Publication Preview PDF
Scopus (3)
Scopus Clarivate Crossref
Publication Date
Mon Mar 08 2021
Journal Name
Baghdad Science Journal
First Order Nonlinear Neutral Delay Differential Equations
...Show More Authors

The author obtain results on the asymptotic behavior of the nonoscillatory solutions of first order nonlinear neutral differential equations. Keywords. Neutral differential equations, Oscillatory and Nonoscillatory solutions.

View Publication Preview PDF
Publication Date
Wed Jan 01 2025
Journal Name
Journal Of Interdisciplinary Mathematics
Double INEM-transform integral for solving second order partial differential equation
...Show More Authors

In this study, a brand-new double transform known as the double INEM transform is introduced. Combined with the definition and essential features of the proposed double transform, new findings on partial derivatives, Heaviside function, are also presented. Additionally, we solve several symmetric applications to show how effective the provided transform is at resolving partial differential equation.

View Publication
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Proceeding Of The 1st International Conference On Advanced Research In Pure And Applied Science (icarpas2021): Third Annual Conference Of Al-muthanna University/college Of Science
Efficient approach for solving high order (2+1)D-differential equation
...Show More Authors

View Publication Preview PDF
Scopus (5)
Crossref (2)
Scopus Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Periodicals Of Engineering And Natural Sciences
Fractional Brownian motion inference of multivariate stochastic differential equations
...Show More Authors

Recently, the financial mathematics has been emerged to interpret and predict the underlying mechanism that generates an incident of concern. A system of differential equations can reveal a dynamical development of financial mechanism across time. Multivariate wiener process represents the stochastic term in a system of stochastic differential equations (SDE). The standard wiener process follows a Markov chain, and hence it is a martingale (kind of Markov chain), which is a good integrator. Though, the fractional Wiener process does not follow a Markov chain, hence it is not a good integrator. This problem will produce an Arbitrage (non-equilibrium in the market) in the predicted series. It is undesired property that leads to erroneous conc

... Show More
Scopus (4)
Scopus