Preferred Language
Articles
/
bsj-6782
Breast Cancer MRI Classification Based on Fractional Entropy Image Enhancement and Deep Feature Extraction
...Show More Authors

Disease diagnosis with computer-aided methods has been extensively studied and applied in diagnosing and monitoring of several chronic diseases. Early detection and risk assessment of breast diseases based on clinical data is helpful for doctors to make early diagnosis and monitor the disease progression. The purpose of this study is to exploit the Convolutional Neural Network (CNN) in discriminating breast MRI scans into pathological and healthy. In this study, a fully automated and efficient deep features extraction algorithm that exploits the spatial information obtained from both T2W-TSE and STIR MRI sequences to discriminate between pathological and healthy breast MRI scans. The breast MRI scans are preprocessed prior to the feature extraction step to enhance and preserve the fine details of the breast MRI scans boundaries by using fractional integral entropy FIE algorithm, to reduce the effects of the intensity variations between MRI slices, and finally to separate the right and left breast regions by exploiting the symmetry information. The obtained features are classified using a long short-term memory (LSTM) neural network classifier. Subsequently, all extracted features significantly improves the performance of the LSTM network to precisely discriminate between pathological and healthy cases. The maximum achieved accuracy for classifying the collected dataset comprising 326 T2W-TSE images and 326 STIR images is 98.77%. The experimental results demonstrate that FIE enhancement method improve the performance of CNN in classifying breast MRI scans. The proposed model appears to be efficient and might represent a useful diagnostic tool in the evaluation of MRI breast scans.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Mar 01 2024
Journal Name
Baghdad Science Journal
Deep Learning Techniques in the Cancer-Related Medical Domain: A Transfer Deep Learning Ensemble Model for Lung Cancer Prediction
...Show More Authors

Problem: Cancer is regarded as one of the world's deadliest diseases. Machine learning and its new branch (deep learning) algorithms can facilitate the way of dealing with cancer, especially in the field of cancer prevention and detection. Traditional ways of analyzing cancer data have their limits, and cancer data is growing quickly. This makes it possible for deep learning to move forward with its powerful abilities to analyze and process cancer data. Aims: In the current study, a deep-learning medical support system for the prediction of lung cancer is presented. Methods: The study uses three different deep learning models (EfficientNetB3, ResNet50 and ResNet101) with the transfer learning concept. The three models are trained using a

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (7)
Scopus Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Journal Of Advanced Pharmaceutical Technology & Research
Hesperetin effect on MLH1 and MSH2 expression on breast cancer cells BT-549
...Show More Authors

View Publication
Scopus (7)
Crossref (4)
Scopus Crossref
Publication Date
Thu Nov 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
The research is based on a thesis not discussed: Test the strategy of the General Organization based on the model Wichler and Bakov A case study at the Iraqi Ministry of Interior
...Show More Authors

The study aimed at identifying the strategic gaps in the actual reality of the management of public organizations investigated to determine the strategy used based on the study model. The study relied on the variable of the general organization strategy in its dimensions (the general organization strategy, the organization's political strategy and the defense strategy of the organization) The sample of the study was (General Directorate of Traffic, Civil Status Directorate and Civil Defense Directorate), formations affiliated to the Ministry of the Interior, for the importance of the activity carried out by these public organizations by providing them In order to translate the answers into a quantitative expression in the analysi

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Aug 26 2024
Journal Name
Jbpml
Effect of Radiation on Blood Component and Hormones on Male Patient and Breast Cancer
...Show More Authors

Background: The study's objective was to estimate the effects of radiation on testosterone-related hormones and blood components in prostate cancer patients. N Materials and Method: This study aims to investigate the effects of radiation on 20 male prostate cancer patients at the Middle Euphrates Oncology Centre. Blood samples were collected before and after radiation treatment, with a total dose of 60- 70 Gy, The blood parameters were analyzed. The hospital laboratory conducted the blood analysis using an analyzer (Diagon D-cell5D) to test blood components before and after radiation. Hormonal examinations included testosterone levels, using the VIDASR 30 for Multiparametric immunoassay system Results: The study assessed the socio-demogra

... Show More
Publication Date
Tue Jun 21 2022
Journal Name
Analytical Science & Technology
The whole wheat effect and refined with E-selectin polymorphism on breast cancer
...Show More Authors

Wheat is rich in sources of fiber, oligosaccharides, and resistant starch, simple carbohydrates which may have a protective role against carcinoma. Additionally, Whole wheat/bran as well includes contains phytochemicals such as flavonoids, lignans, folate, phytosterols, phenolic acids, and tocols. The above phytochemicals suitable forms antioxidant and cholesterol-reducing activities. Phytoestrogens are regarded as especially essential in the preventative measures of hormonally dependent malignancies such as breast cancer (BC). In this study lowered BC risk has been associated with whole grain/bran consumption with an odds ratio (OR=0.24 and 95 %CI=0.10-0.56). Wheat/bran appears to have a reliable protective impact against BC. While intake

... Show More
Preview PDF
Scopus (1)
Scopus Clarivate
Publication Date
Fri Aug 23 2013
Journal Name
International Journal Of Computer Applications
Image Compression based on Quadtree and Polynomial
...Show More Authors

View Publication
Crossref (3)
Crossref
Publication Date
Sun Oct 29 2023
Journal Name
Iraqi National Journal Of Nursing Specialties
Assessment the Relation between Breast Cancer and Blood Group
...Show More Authors

Objectives: To assess the relation between breast cancer & blood groups, identify the importance of women
age group and the relation of age with breast cancer.
Methodology: The study was performed on (115) women who were diagnosed with breast cancer in different
stages of disease and different ages. Blood samples were taken from them to demonstrate their blood groups and
(20) fresh tumor tissue samples were obtained; the tumor tissue used as a source of lectin for hemagglutinate
with erythrocyte of different blood groups. The study conducted at Baghdad Teaching Hospital and Radiation &
Nuclear Medicine Hospital from January, 2007 through June 2007.
Results: The study shows that the highest percentage of women

... Show More
View Publication Preview PDF
Publication Date
Sun Jun 01 2014
Journal Name
Baghdad Science Journal
Classification of fetal abnormalities based on CTG signal
...Show More Authors

The fetal heart rate (FHR) signal processing based on Artificial Neural Networks (ANN),Fuzzy Logic (FL) and frequency domain Discrete Wavelet Transform(DWT) were analysis in order to perform automatic analysis using personal computers. Cardiotocography (CTG) is a primary biophysical method of fetal monitoring. The assessment of the printed CTG traces was based on the visual analysis of patterns that describing the variability of fetal heart rate signal. Fetal heart rate data of pregnant women with pregnancy between 38 and 40 weeks of gestation were studied. The first stage in the system was to convert the cardiotocograghy (CTG) tracing in to digital series so that the system can be analyzed ,while the second stage ,the FHR time series was t

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Oct 01 2016
Journal Name
2016 6th International Conference On Information Communication And Management (icicm)
Enhancing case-based reasoning retrieval using classification based on associations
...Show More Authors

View Publication
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Thu Mar 13 2025
Journal Name
Academia Open
Deep Learning and Fusion Techniques for High-Precision Image Matting:
...Show More Authors

General Background: Deep image matting is a fundamental task in computer vision, enabling precise foreground extraction from complex backgrounds, with applications in augmented reality, computer graphics, and video processing. Specific Background: Despite advancements in deep learning-based methods, preserving fine details such as hair and transparency remains a challenge. Knowledge Gap: Existing approaches struggle with accuracy and efficiency, necessitating novel techniques to enhance matting precision. Aims: This study integrates deep learning with fusion techniques to improve alpha matte estimation, proposing a lightweight U-Net model incorporating color-space fusion and preprocessing. Results: Experiments using the AdobeComposition-1k

... Show More
View Publication Preview PDF