Disease diagnosis with computer-aided methods has been extensively studied and applied in diagnosing and monitoring of several chronic diseases. Early detection and risk assessment of breast diseases based on clinical data is helpful for doctors to make early diagnosis and monitor the disease progression. The purpose of this study is to exploit the Convolutional Neural Network (CNN) in discriminating breast MRI scans into pathological and healthy. In this study, a fully automated and efficient deep features extraction algorithm that exploits the spatial information obtained from both T2W-TSE and STIR MRI sequences to discriminate between pathological and healthy breast MRI scans. The breast MRI scans are preprocessed prior to the feature extraction step to enhance and preserve the fine details of the breast MRI scans boundaries by using fractional integral entropy FIE algorithm, to reduce the effects of the intensity variations between MRI slices, and finally to separate the right and left breast regions by exploiting the symmetry information. The obtained features are classified using a long short-term memory (LSTM) neural network classifier. Subsequently, all extracted features significantly improves the performance of the LSTM network to precisely discriminate between pathological and healthy cases. The maximum achieved accuracy for classifying the collected dataset comprising 326 T2W-TSE images and 326 STIR images is 98.77%. The experimental results demonstrate that FIE enhancement method improve the performance of CNN in classifying breast MRI scans. The proposed model appears to be efficient and might represent a useful diagnostic tool in the evaluation of MRI breast scans.
Medical images play a crucial role in the classification of various diseases and conditions. One of the imaging modalities is X-rays which provide valuable visual information that helps in the identification and characterization of various medical conditions. Chest radiograph (CXR) images have long been used to examine and monitor numerous lung disorders, such as tuberculosis, pneumonia, atelectasis, and hernia. COVID-19 detection can be accomplished using CXR images as well. COVID-19, a virus that causes infections in the lungs and the airways of the upper respiratory tract, was first discovered in 2019 in Wuhan Province, China, and has since been thought to cause substantial airway damage, badly impacting the lungs of affected persons.
... Show MoreAbstract
Experimental work from Magnetic Abrasive Finishing (MAF) tests was carried out design parameters (amplitude, and number of cycle which are formed the shape of electromagnetic pole), and technological parameters (current, cutting speed, working gap, and finishing time) all have an influence on the mechanical properties of the surface layer in MAF process. This research has made to study the effect of design and technological parameters on the surface roughness (Ra), micro hardness (Hv) and material removal (MR) in working zone. A set of experimental tests has been planned using response surface methodology according to Taguchi matrix (36) with three levels and six factors
... Show MoreThe field of Optical Character Recognition (OCR) is the process of converting an image of text into a machine-readable text format. The classification of Arabic manuscripts in general is part of this field. In recent years, the processing of Arabian image databases by deep learning architectures has experienced a remarkable development. However, this remains insufficient to satisfy the enormous wealth of Arabic manuscripts. In this research, a deep learning architecture is used to address the issue of classifying Arabic letters written by hand. The method based on a convolutional neural network (CNN) architecture as a self-extractor and classifier. Considering the nature of the dataset images (binary images), the contours of the alphabet
... Show MoreThe general health of palm trees, encompassing the roots, stems, and leaves, significantly impacts palm oil production, therefore, meticulous attention is needed to achieve optimal yield. One of the challenges encountered in sustaining productive crops is the prevalence of pests and diseases afflicting oil palm plants. These diseases can detrimentally influence growth and development, leading to decreased productivity. Oil palm productivity is closely related to the conditions of its leaves, which play a vital role in photosynthesis. This research employed a comprehensive dataset of 1,230 images, consisting of 410 showing leaves, another 410 depicting bagworm infestations, and an additional 410 displaying caterpillar infestations. Furthe
... Show MoreIn this work, satellite images classification for Al Chabaish marshes and the area surrounding district in (Dhi Qar) province for years 1990,2000 and 2015 using two software programming (MATLAB 7.11 and ERDAS imagine 2014) is presented. Proposed supervised classification method (Modified Vector Quantization) using MATLAB software and supervised classification method (Maximum likelihood Classifier) using ERDAS imagine have been used, in order to get most accurate results and compare these methods. The changes that taken place in year 2000 comparing with 1990 and in year 2015 comparing with 2000 are calculated. The results from classification indicated that water and vegetation are decreased, while barren land, alluvial soil and shallow water
... Show Moreتعتبر شبكية العين جزءًا مهمًا من العين لأن الأطباء يستخدمون صورها لتشخيص العديد من أمراض العيون مثل الجلوكوما واعتلال الشبكية السكري وإعتام عدسة العين. في الواقع، يعد تصوير الشبكية المجزأ أداة قوية للكشف عن النمو غير العادي في منطقة العين بالإضافة إلى تحديد حجم وبنية القرص البصري. يمكن أن يؤدي الجلوكوما إلى إتلاف القرص البصري، مما يغير مظهر القرص البصري للعين. تعمل تقنيتنا على الكشف عن الجلوكوما وتصنيفه
... Show MoreProstate cancer is the commonest male cancer and the second leading cause of cancer-related death in men. Over many decades, prostate cancer detection represented a continuous challenge to urologists. Although all urologists and pathologists agree that tissue diagnosis is essential especially before commencing active surgical or radiation treatment, the best way to obtain the biopsy was always the big hurdle. The heterogenicity of the tumor pathology is very well seen in its radiological appearance. Ultrasound has been proven to be of limited sensitivity and specificity in detecting prostate cancer. However, it was the only available targeting technique for years and was used to guide biopsy needle passed transrectally or transperineally
... Show MoreBreast cancer is the most repeatedly detected cancer category and the second reason cause of cancer-linked deaths among women worldwide. Tumor bio-indictor is a term utilized to describe possible indicators for carcinoma diagnosis, development and progression. The goal of this study is to evaluate part of some cytokines and biomarkers for both serum and saliva samples in breast cancer then estimate their potential value in the early diagnosis of breast cancer by doing more researches in saliva, and utilizing saliva instead of blood (serum and plasma) in sample collection from patients. Serum and salivary samples were taken from 72 patients with breast cancer and 45 healthy controls, in order to investigate the following
... Show MoreIn the image processing’s field and computer vision it’s important to represent the image by its information. Image information comes from the image’s features that extracted from it using feature detection/extraction techniques and features description. Features in computer vision define informative data. For human eye its perfect to extract information from raw image, but computer cannot recognize image information. This is why various feature extraction techniques have been presented and progressed rapidly. This paper presents a general overview of the feature extraction categories for image.