The human kidney is one of the most important organs in the human body; it performs many functions
and has a great impact on the work of the rest of the organs. Among the most important possible treatments is
dialysis, which works as an external artificial kidney, and several studies have worked to enhance the
mechanism of dialysate flow and improve the permeability of its membrane. This study introduces a new
numerical model based on previous research discussing the variations in the concentrations of sodium,
potassium, and urea in the extracellular area in the blood during hemodialysis. We simulated the differential
equations related to mass transfer diffusion and we developed the model in MATLAB Simulink environment.
A value of 700 was appeared to be the most appropriate as a mass transfer coefficient leading to the best
permeability. The suggested models enabled to track the temporal variations of urine, K and Na concentrations
in blood streamline. This also produced the time needed to reach the requested concentrations mentioned in
literature studies (960 ms). Concentrations evaluation was performed with error rates not exceeding 2% for all
ions compared to the normal values of human blood.The current work presents the first step towards combinig
the mass transfer and diffusion principles with our efforts in designing and implementing an electrophoresisbased implantable kidney.
Copper Telluride Thin films of thickness 700nm and 900nm, prepared thin films using thermal evaporation on cleaned Si substrates kept at 300K under the vacuum about (4x10-5 ) mbar. The XRD analysis and (AFM) measurements use to study structure properties. The sensitivity (S) of the fabricated sensors to NO2 and H2 was measured at room temperature. The experimental relationship between S and thickness of the sensitive film was investigated, and higher S values were recorded for thicker sensors. Results showed that the best sensitivity was attributed to the Cu2Te film of 900 nm thickness at the H2 gas.
This research was conducted to study the feasibility of using fruit peels as biosorbent for removal of Pb+2, Cu+2 and Zn+2 ions from simulated wastewater. A waste biomass of Pomegranate Peel or Punicagranatum L. (P. granatum L.) was chosen as neutral biosorbent in this study.Fourier transformation infrared (FTIR) was used to characterize the surface of PGP, the results confirm that amino, carboxylic, hydroxyl and carbonyl group on the surface of PGP. Different parameters such as initial concentration range between (25-200) mg/L, pH (3-7), contact time (1-2) hour, amount of sorbent (0.1- 4) gm, agitation speed range (200- 500) rpm and temperature (25- 50oC), influencing the sorp
... Show MoreThe main object of this study is to solve a system of nonlinear ordinary differential equations (ODE) of the first order governing the epidemic model using numerical methods. The application under study is a mathematical epidemic model which is the influenza model at Australia in 1919. Runge-kutta methods of order 4 and of order 45 for solving this initial value problem(IVP) problem have been used. Finally, the results obtained have been discussed tabularly and graphically.
This paper introduces a Laplace-based modeling approach for the study of transient converter-grid interactions. The proposed approach is based on the development of two-port admittance models of converters and other components, combined with the use of numerical Laplace transforms. The application of a frequency domain method is aimed at the accurate and straightforward computation of transient system responses while preserving the wideband frequency characteristics of power components, such as those due to the use of high frequency semiconductive switches, electromagnetic interaction between inductive and capacitive components, as well as wave propagation and frequency dependence in transmission systems.
Friction stir spot welding (FSSW) is a relatively new welding process that may have significant advantages compared to the fusion processes as follows joining of conventionally non-fusion weldable alloys, reduced distortion and improved mechanical properties of weldable alloys joints due to the pure solidstate joining of metals. In this paper, a three-dimensional model based on finite element analysis is used to study the thermal history in the spot-welding of aluminum alloy 2024. The model take place the thermomechanical property on the process of the welded metals. The thermal history and the evolution results with numerical model at the measured point in the friction stirred spot weld have a good matching, then the prediction of the t
... Show More