Preferred Language
Articles
/
bsj-571
B-splines Algorithms for Solving Fredholm Linear Integro-Differential Equations
...Show More Authors

Algorithms using the second order of B -splines [B (x)] and the third order of B -splines [B,3(x)] are derived to solve 1' , 2nd and 3rd linear Fredholm integro-differential equations (F1DEs). These new procedures have all the useful properties of B -spline function and can be used comparatively greater computational ease and efficiency.The results of these algorithms are compared with the cubic spline function.Two numerical examples are given for conciliated the results of this method.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Mar 06 2023
Journal Name
Arts
Solving chemical problems among students of the College of Education for Pure Sciences, Ibn al-Haytham
...Show More Authors

Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
Lecture Notes In Electrical Engineering
A Method Combining Compressive Sensing-Based Method of Moment and LU Decomposition for Solving Monostatic RCS
...Show More Authors

View Publication
Scopus Clarivate Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Ieee Access
Dual-Layer Compressive Sensing Scheme Incorporating Adaptive Cross Approximation Algorithm for Solving Monostatic Electromagnetic Scattering Problems
...Show More Authors

View Publication
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Thu Apr 03 2025
Journal Name
Engineering, Technology & Applied Science Research
Application of the One-Step Second-Derivative Method for Solving the Transient Distribution in Markov Chain
...Show More Authors

Markov chains are an application of stochastic models in operation research, helping the analysis and optimization of processes with random events and transitions. The method that will be deployed to obtain the transient solution to a Markov chain problem is an important part of this process. The present paper introduces a novel Ordinary Differential Equation (ODE) approach to solve the Markov chain problem. The probability distribution of a continuous-time Markov chain with an infinitesimal generator at a given time is considered, which is a resulting solution of the Chapman-Kolmogorov differential equation. This study presents a one-step second-derivative method with better accuracy in solving the first-order Initial Value Problem

... Show More
View Publication
Scopus Crossref
Publication Date
Tue Jun 04 2024
Journal Name
International Journal Of Operational Research
Pascal's triangle graded mean defuzzification approach for solving fuzzy assignment models by using pentagonal fuzzy numbers
...Show More Authors

The fuzzy assignment models (FAMs) have been explored by various literature to access classical values, which are more precise in our real-life accomplishment. The novelty of this paper contributed positively to a unique application of pentagonal fuzzy numbers for the evaluation of FAMs. The new method namely Pascal's triangle graded mean (PT-GM) has presented a new algorithm in accessing the critical path to solve the assignment problems (AP) based on the fuzzy objective function of minimising total cost. The results obtained have been compared to the existing methods such as, the centroid formula (CF) and centroid formula integration (CFI). It has been demonstrated that operational efficiency of this conducted method is exquisitely develo

... Show More
View Publication
Scopus Crossref
Publication Date
Sun Sep 01 2019
Journal Name
Gazi University Journal Of Science
Reliable Iterative Methods for Solving Convective Straight and Radial Fins with Temperature-Dependent Thermal Conductivity Problems
...Show More Authors

In our article, three iterative methods are performed to solve the nonlinear differential equations that represent the straight and radial fins affected by thermal conductivity. The iterative methods are the Daftardar-Jafari method namely (DJM), Temimi-Ansari method namely (TAM) and Banach contraction method namely (BCM) to get the approximate solutions. For comparison purposes, the numerical solutions were further achieved by using the fourth Runge-Kutta (RK4) method, Euler method and previous analytical methods that available in the literature. Moreover, the convergence of the proposed methods was discussed and proved. In addition, the maximum error remainder values are also evaluated which indicates that the propo

... Show More
View Publication
Crossref (6)
Crossref
Publication Date
Wed Dec 03 2025
Journal Name
Journal Of Taibah University For Science
Effective computational methods for solving the hyperbolic one-dimensional wave equation with nonlocal mixed boundary conditions
...Show More Authors

This paper considers approximate solution of the hyperbolic one-dimensional wave equation with nonlocal mixed boundary conditions by improved methods based on the assumption that the solution is a double power series based on orthogonal polynomials, such as Bernstein, Legendre, and Chebyshev. The solution is ultimately compared with the original method that is based on standard polynomials by calculating the absolute error to verify the validity and accuracy of the performance.

View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Fri Aug 01 2014
Journal Name
International J. Of Math. Sci. & Engg. Appls.
NEUTRAL DELAY DIFFERENTIAL EQUATION WITH ONE LARGE DELAY
...Show More Authors

Publication Date
Sun Aug 03 2014
Journal Name
Journal Of Advances In Mathematics
On types of Delay in Delay Differential equation
...Show More Authors

Publication Date
Sun Dec 22 2024
Journal Name
Journal Of Petroleum Research And Studies
Optimizing Well Placement with Genetic Algorithms: A Case Study
...Show More Authors

Maximizing the net present value (NPV) of oil field development is heavily dependent on optimizing well placement. The traditional approach entails the use of expert intuition to design well configurations and locations, followed by economic analysis and reservoir simulation to determine the most effective plan. However, this approach often proves inadequate due to the complexity and nonlinearity of reservoirs. In recent years, computational techniques have been developed to optimize well placement by defining decision variables (such as well coordinates), objective functions (such as NPV or cumulative oil production), and constraints. This paper presents a study on the use of genetic algorithms for well placement optimization, a ty

... Show More
View Publication
Crossref