Algorithms using the second order of B -splines [B (x)] and the third order of B -splines [B,3(x)] are derived to solve 1' , 2nd and 3rd linear Fredholm integro-differential equations (F1DEs). These new procedures have all the useful properties of B -spline function and can be used comparatively greater computational ease and efficiency.The results of these algorithms are compared with the cubic spline function.Two numerical examples are given for conciliated the results of this method.
In this paper we estimate the coefficients and scale parameter in linear regression model depending on the residuals are of type 1 of extreme value distribution for the largest values . This can be regard as an improvement for the studies with the smallest values . We study two estimation methods ( OLS & MLE ) where we resort to Newton – Raphson (NR) and Fisher Scoring methods to get MLE estimate because the difficulty of using the usual approach with MLE . The relative efficiency criterion is considered beside to the statistical inference procedures for the extreme value regression model of type 1 for largest values . Confidence interval , hypothesis testing for both scale parameter and regression coefficients
... Show MoreAt the last years, the interesting of measurement spicilists was increased to study differential item functioning (DIF) wich is reflect the difference of propability true response for test item from subgroups which have equal level of ability . The aims of this research are, inform the DIFat Namers’scale(2009) for mental health to prepare students and detect items that have DIF. Sample research contants (540) students, we use Mantel- Haenzel chi-square to detect DIF. The results are point to there are (26) items have DIF according to gender which are delated form the scale after that.
Background: Strangles is a highly contagious equine respiratory disease caused by Streptococcus equi subsp. equi. It is a globally significant pathogen and one of the most common infectious agents in horses. In Iraq, no sequencing data on this pathogen are available, and only two molecular studies have been published to date. This study provides preliminary insights into strain diversity and provides a foundation for future large-scale investigations. Aim: This study aimed to investigate the molecular characteristics, identify SeM gene alleles, and perform a phylogenetic analysis of S. equi isolates from horses in Baghdad, Iraq. Methods: We analyzed 59 Streptococcus spp. isolates previously obtained from equine clinical sample
... Show MoreCommercial graphite (CGT) powder was used as an adsorbent surface for cationic dye, Janus green (JG), from aqueous solutions. This study aims to highlight the practical significance of using inexpensive CGT as an efficient adsorbent for the removal of JG dye from industrial wastewater. CGT was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, and X-ray diffraction. The adsorption process was investigated by examining parameters like the weight of the adsorbent, contact time, and temperature. Pseudo-second-order kinetic (PSO), pseudo-first-order, and intraparticle diffusion were used for analyzing the kinetic data. JG dye's adsorption kinetics fit the PSO kinetic model well (R2= 0.999). Furthermo
... Show MoreWithin the framework of big data, energy issues are highly significant. Despite the significance of energy, theoretical studies focusing primarily on the issue of energy within big data analytics in relation to computational intelligent algorithms are scarce. The purpose of this study is to explore the theoretical aspects of energy issues in big data analytics in relation to computational intelligent algorithms since this is critical in exploring the emperica aspects of big data. In this chapter, we present a theoretical study of energy issues related to applications of computational intelligent algorithms in big data analytics. This work highlights that big data analytics using computational intelligent algorithms generates a very high amo
... Show More<span lang="EN-US">Diabetes is one of the deadliest diseases in the world that can lead to stroke, blindness, organ failure, and amputation of lower limbs. Researches state that diabetes can be controlled if it is detected at an early stage. Scientists are becoming more interested in classification algorithms in diagnosing diseases. In this study, we have analyzed the performance of five classification algorithms namely naïve Bayes, support vector machine, multi layer perceptron artificial neural network, decision tree, and random forest using diabetes dataset that contains the information of 2000 female patients. Various metrics were applied in evaluating the performance of the classifiers such as precision, area under the c
... Show MoreEnhancing quality image fusion was proposed using new algorithms in auto-focus image fusion. The first algorithm is based on determining the standard deviation to combine two images. The second algorithm concentrates on the contrast at edge points and correlation method as the criteria parameter for the resulted image quality. This algorithm considers three blocks with different sizes at the homogenous region and moves it 10 pixels within the same homogenous region. These blocks examine the statistical properties of the block and decide automatically the next step. The resulted combined image is better in the contras
... Show MoreIn recent years, Wireless Sensor Networks (WSNs) are attracting more attention in many fields as they are extensively used in a wide range of applications, such as environment monitoring, the Internet of Things, industrial operation control, electric distribution, and the oil industry. One of the major concerns in these networks is the limited energy sources. Clustering and routing algorithms represent one of the critical issues that directly contribute to power consumption in WSNs. Therefore, optimization techniques and routing protocols for such networks have to be studied and developed. This paper focuses on the most recent studies and algorithms that handle energy-efficiency clustering and routing in WSNs. In addition, the prime
... Show More<span>One of the main difficulties facing the certified documents documentary archiving system is checking the stamps system, but, that stamps may be contains complex background and surrounded by unwanted data. Therefore, the main objective of this paper is to isolate background and to remove noise that may be surrounded stamp. Our proposed method comprises of four phases, firstly, we apply k-means algorithm for clustering stamp image into a number of clusters and merged them using ISODATA algorithm. Secondly, we compute mean and standard deviation for each remaining cluster to isolate background cluster from stamp cluster. Thirdly, a region growing algorithm is applied to segment the image and then choosing the connected regi
... Show MoreA steganography hides information within other information, such as file, message, picture, or video. A cryptography is the science of converting the information from a readable form to an unreadable form for unauthorized person. The main problem in the stenographic system is embedding in cover-data without providing information that would facilitate its removal. In this research, a method for embedding data into images is suggested which employs least significant bit Steganography (LSB) and ciphering (RSA algorithm) to protect the data. System security will be enhanced by this collaboration between steganography and cryptography.