The applications of hot plasma are many and numerous applications require high values of the temperature of the electrons within the plasma region. Improving electron temperature values is one of the important processes for using this specification in plasma for being adopted in several modern applications such as nuclear fusion, plating operations and in industrial applications. In this work, theoretical computations were performed to enhance electron temperature under dense homogeneous plasma. The effect of power and duration time of pulsed Nd:YAG laser was studied on the heating of plasmas by inverse bremsstrahlung for several values for the electron density ratio. There results for these calculations showed that the effect of increasing the values of the laser pulse power (25-250kW) led to decrease the absorption coefficient values by 58.3% and increase the electron temperature by 50.0% at duration pulse time 0.5ns and electron density ratio 0.1. Furthermore, the ratio of electron density increasing and pulse duration time led to increase the higher values of the electron temperature. The results of the calculations showed the effect of the laser power, the percentage of electron density, and the pulse duration for improving the electron temperature. It is possible to control the temperature of the electrons with one of the plasma parameters or the laser beam used, and that it gives a clear indication of researchers in this field to choose the optimal wavelength of the laser beam and electron density ratios for the plasma.
The present study illustrates observations, record accurate description and discussion about the behavior of twelve tested, simply supported, precast, prestressed, segmental, concrete beams with different segment numbers exposed to high fire temperatures of 300°C, 500°C, and 700°C. The test program included thermal tests by using a furnace manufactured for this purpose to expose to high burning temperature (fire flame) nine beams which were loaded with sustaining dead load throughout the burning process. The beams were divided into three groups depending on the precast segments number. All had an identical total length of 3150mm but each had different segment number (9, 7, and 5 segments), in other words, different segment length
... Show MoreIn this work the effect of annealing temperature on the structure and the electrical properties of Bi thin films was studied, the Bi films were deposited on glass substrates at room temperature by thermal evaporation technique with thickness (0.4 µm) and rate of deposition equal to 6.66Å/sec, all samples are annealed in a vacuum for one hour. The X-ray diffraction analysis shows that the prepared samples are polycrystalline and it exhibits hexagonal structure. The electrical properties of these films were studied with different annealing temperatures, the d.c conductivity for films decreases from 16.42 ? 10-2 at 343K to 10.11?10-2 (?.cm)-1 at 363K. The electrical activation energies Ea1 and Ea2 increase from 0.031 to 0.049eV and
... Show MoreThe physical behavior for the energy distribution function (EDF) of the reactant particles depending upon the gases (fuel) temperature are completely described by a physical model covering the global formulas controlling the EDF profile. Results about the energy distribution for the reactant system indicate a standard EDF, in which it’s arrive a steady state form shape and intern lead to fix the optimum selected temperature.
This paper describes the use of microcomputer as a laboratory instrument system. The system is focused on three weather variables measurement, are temperature, wind speed, and wind direction. This instrument is a type of data acquisition system; in this paper we deal with the design and implementation of data acquisition system based on personal computer (Pentium) using Industry Standard Architecture (ISA)bus. The design of this system involves mainly a hardware implementation, and the software programs that are used for testing, measuring and control. The system can be used to display the required information that can be transferred and processed from the external field to the system. A visual basic language with Microsoft foundation cl
... Show MoreMobile Wireless sensor networks have acquired a great interest recently due to their capability to provide good solutions and low-priced in multiple fields. Internet of Things (IoT) connects different technologies such as sensing, communication, networking, and cloud computing. It can be used in monitoring, health care and smart cities. The most suitable infrastructure for IoT application is wireless sensor networks. One of the main defiance of WSNs is the power limitation of the sensor node. Clustering model is an actual way to eliminate the inspired power during the transmission of the sensed data to a central point called a Base Station (BS). In this paper, efficient clustering protocols are offered to prolong network lifetime. A kern
... Show MoreAbstract
This research aims to develop a unit as part of a sixth-grade Arabic language textbook and measure its effectiveness in the development of twenty-first-century skills of female students. The author adopted the experimental approach with a quasi-experimental design of the pre-post single-group. A list of the major skills was derived from the framework for the 21st-century skills of the mother tongue that was developed by the Partnership for 21st-Century Skills and reviewed and adjusted by some specialists. According to their views, the unit was developed. The study targeted 15 sub-skills falling under three main skills. The results of the study showed the effectiveness of the developed unit in the develo
... Show MoreCold atmospheric plasma (CAP) is used widely in medical and biological fields because of non-thermal effected. Direct application of plasma is preferred in medical functions, so, direct application of cold plasma has obtained by the floating electrode dielectric barrier discharge (FE-DBD) system. The purpose of this paper to review the effect of (CAP) on the reproductive hormones (testosterone, LH, E2, progesterone, for male rats. The study appeared that no significant effect on E2 and progesterone hormone for all time of exposure, besides this significant difference in LH hormone (P<0.05) at 15 sec, (P<0.0001) at 30, 90 sec and (P<0.001) at 60 sec of exposure to plasma. Added to that significant difference (P<0.01) at 15, 30, 60 sec and no
... Show More