In this paper we prove the boundedness of the solutions and their derivatives of the second order ordinary differential equation x ?+f(x) x ?+g(x)=u(t), under certain conditions on f,g and u. Our results are generalization of those given in [1].
In this paper, we introduce an exponential of an operator defined on a Hilbert space H, and we study its properties and find some of properties of T inherited to exponential operator, so we study the spectrum of exponential operator e^T according to the operator T.
Recently, the financial mathematics has been emerged to interpret and predict the underlying mechanism that generates an incident of concern. A system of differential equations can reveal a dynamical development of financial mechanism across time. Multivariate wiener process represents the stochastic term in a system of stochastic differential equations (SDE). The standard wiener process follows a Markov chain, and hence it is a martingale (kind of Markov chain), which is a good integrator. Though, the fractional Wiener process does not follow a Markov chain, hence it is not a good integrator. This problem will produce an Arbitrage (non-equilibrium in the market) in the predicted series. It is undesired property that leads to erroneous conc
... Show MoreA standard theoretical neutron energy flux distribution is achieved for the triton-triton nuclear fusion reaction in the range of triton energy about ≤10 MeV. This distribution give raises an evidence to provide the global calculations including the characteristics fusion parameters governing the T-T fusion reaction.
This paper is dealing with non-polynomial spline functions "generalized spline" to find the approximate solution of linear Volterra integro-differential equations of the second kind and extension of this work to solve system of linear Volterra integro-differential equations. The performance of generalized spline functions are illustrated in test examples
In this paper, a new class of non-convex functions called semi strongly (
This study delves into the properties of the associated act V over the monoid S of sinshT. It examines the relationship between faithful, finitely generated, and separated acts, as well as their connections to one-to-one and onto operators. Additionally, the correlation between acts over a monoid and modules over a ring is explored. Specifically, it is established that functions as an act over S if and only if functions as module, where T represents a nilpotent operator. Furthermore, it is proved that when T is onto operator and is finitely generated, is guaranteed to be finite-dimensional. Prove that for any bounded operator the following, is acting over S if and only if is a module where T is a nilpotent operator, is a
... Show Moreالأثر V بالنسبة إلى sinshT و خواصه قد تم دراسته في هذا البحث حيث تم دراسة علاقة الأثر المخلص والاثر المنتهى التولد والاثر المنفصل وربطها بالمؤثرات المتباينة حيث تم بهنة العلاقات التالية ان الاثر اذا وفقط اذا مقاس في حالة كون المؤثر هو عديم القوة وكذلك في حالة كون المؤثر شامل فان الاثر هو منتهي التولد اي ان الغضاء هو منتهي التولد وايضا تم برهن ان الاثر مخلص لكل مؤثر مقيد وك\لك قد تم التحقق من انه لاي مؤثر مقي
... Show MoreResearch on the automated extraction of essential data from an electrocardiography (ECG) recording has been a significant topic for a long time. The main focus of digital processing processes is to measure fiducial points that determine the beginning and end of the P, QRS, and T waves based on their waveform properties. The presence of unavoidable noise during ECG data collection and inherent physiological differences among individuals make it challenging to accurately identify these reference points, resulting in suboptimal performance. This is done through several primary stages that rely on the idea of preliminary processing of the ECG electrical signal through a set of steps (preparing raw data and converting them into files tha
... Show More