In this paper we prove the boundedness of the solutions and their derivatives of the second order ordinary differential equation x ?+f(x) x ?+g(x)=u(t), under certain conditions on f,g and u. Our results are generalization of those given in [1].
This paper considers a new Double Integral transform called Double Sumudu-Elzaki transform DSET. The combining of the DSET with a semi-analytical method, namely the variational iteration method DSETVIM, to arrive numerical solution of nonlinear PDEs of Fractional Order derivatives. The proposed dual method property decreases the number of calculations required, so combining these two methods leads to calculating the solution's speed. The suggested technique is tested on four problems. The results demonstrated that solving these types of equations using the DSETVIM was more advantageous and efficient
The relation between faithful, finitely generated, separated acts and the one-to-one operators was investigated, and the associated S-act of coshT and its attributes have been examined. In this paper, we proved for any bounded Linear operators T, VcoshT is faithful and separated S-act, and if a Banach space V is finite-dimensional, VcoshT is infinitely generated.
This work discusses the beginning of fractional calculus and how the Sumudu and Elzaki transforms are applied to fractional derivatives. This approach combines a double Sumudu-Elzaki transform strategy to discover analytic solutions to space-time fractional partial differential equations in Mittag-Leffler functions subject to initial and boundary conditions. Where this method gets closer and closer to the correct answer, and the technique's efficacy is demonstrated using numerical examples performed with Matlab R2015a.
The preliminary test of the compounds N [2– (3,4–dimethoxy nitrobenzene oxazepine– 2,3–dihydro–4,7–dione]–5–mercupto–2–amino–1,3,4–thiadiazol [A] and N [ 2–anthralidene– 5– ( 2–nitrophenyl ) –1,3–oxazepine–4,7–dione–2–d](5–mercapto–1,3,4–thiadiazole–2–amin) [B] , showed that they possess high activity against some positive and negative bacteria , like pseudomonas aeruginosa (pseudo.), Escherichia coli (E-coli), staphylococcus aureus (sta.) and Bacillus subtilis (Ba.) and finally there is a study of the effect of some antibiotics like streptomycin (S), gentamycin (GN), chloramphenicol (C) and Nalitixic acid (NA) in order to compare the differences in effects. In the present study, results
... Show MoreWe introduced the nomenclature of orthogonal G -m-derivations and orthogonal generalized G -m-derivations in semi-prime G -near-rings and provide a few essentials and enough provision for generalized G -n-derivations in semi-prime G -near-rings by orthogonal.
In this paper, several conditions are put in order to compose the sequence of partial sums , and of the fractional operators of analytic univalent functions , and of bounded turning which are bounded turning too.
This study included 50 blood samples that were collected from patients with age ranged between 35-65 years. Thirty samples were collected from patients with Type 2 Diabetes Mellitus (T2DM), while 20 blood samples were collected from healthy individuals as a control sample. The polymorphism results of TGF-β1 gene in codon 10: +869*C/T position by using amplification refractory mutation system (ARMS-PCR) showed that the T allele was suggested to have a protective effect, while C allele was associated with an increased risk of T2DM. The TT and CT were suggested to have a protective effect, while CC genotype was associated with an increased risk of T2DM. The polymorphism results of TGF-β1 gene in codon 25: +915*G/C position in samples
... Show MoreIn this paper we find the exact solution of Burger's equation after reducing it to Bernoulli equation. We compare this solution with that given by Kaya where he used Adomian decomposition method, the solution given by chakrone where he used the Variation iteration method (VIM)and the solution given by Eq(5)in the paper of M. Javidi. We notice that our solution is better than their solutions.