Background: Angiogenesis is defined as the formation of new blood vessels. However, angiogenesis in cancer will lead to tumour growth and metastasis. Therefore, anti-angiogenesis is one of the ways to slow down growth and spreading of tumour. Moringa oleifera is also known as a “Miracle tree” which has high nutritive value and various therapeutics effect in different parts of the plant. This study aims to determine the anti-angiogenic property of Moringa oleifera leaves extract by using chick chorioallantoic membrane (CAM) assay. Materials and Methods: The extracts were prepared by decoction method using methanol and water. The qualitative phytochemical screening was carried out for both methanol and aqueous extracts. The fertilised chicken eggs were divided into six groups which include negative control group (phosphate-buffer saline with pH 7.4), positive control group (sunitinib), 50% and 100% methanol extract, 50% and 100% aqueous extract. The anti-angiogenic effect of Moringa oleifera leaves extract was determined by calculating the number and percentage decrease in blood vessels in post-24 and post-48 hours of treatment. Results: Statistical analysis by one-way ANOVA has shown significant (p<0.05) percentage reduction in the blood vessels between each treatment group after 48 hours of treatment. Among all the extracts, 100% aqueous extract of Moringa oleifera was found to have highest anti-angiogenic effect with the greater percentage decrease in blood vessels (81.33%) in post-48 hours of treatment. Furthermore, the anti-angiogenic effect of Moringa oleifera leaves was found to increased when the concentration of the Moringa oleifera extract was increased. Conclusion: Moringa oleifera leaves with various phytochemicals was found to possess anti-angiogenic potential.
Human interaction technology based on motion capture (MoCap) systems is a vital tool for human kinematics analysis, with applications in clinical settings, animations, and video games. We introduce a new method for analyzing and estimating dorsal spine movement using a MoCap system. The captured data by the MoCap system are processed and analyzed to estimate the motion kinematics of three primary regions; the shoulders, spine, and hips. This work contributes a non-invasive and anatomically guided framework that enables region-specific analysis of spinal motion which could be used as a clinical alternative to invasive measurement techniques. The hierarchy of our model consists of five main levels; motion capture system settings, marker data
... Show MoreIn this work, using GPS which has best accuracy that can be established set of GCPs, also two satellite images can be used, first with high resolution QuickBird, and second has low resolution Landsat image and topographic maps with 1:100,000 and 1:250,000 scales. The implementing of these factors (GPS, two satellite images, different scales for topographic maps, and set of GCPs) can be applying. In this study, must be divided this work into two parts geometric accuracy and informative accuracy investigation. The first part is showing geometric correction for two satellite images and maps.
The second part of the results is to demonstrate the features (how the features appearance) of topographic map or pictorial map (image map), Where i
With its rapid spread, the coronavirus infection shocked the world and had a huge effect on billions of peoples' lives. The problem is to find a safe method to diagnose the infections with fewer casualties. It has been shown that X-Ray images are an important method for the identification, quantification, and monitoring of diseases. Deep learning algorithms can be utilized to help analyze potentially huge numbers of X-Ray examinations. This research conducted a retrospective multi-test analysis system to detect suspicious COVID-19 performance, and use of chest X-Ray features to assess the progress of the illness in each patient, resulting in a "corona score." where the results were satisfactory compared to the benchmarked techniques. T
... Show MoreAlthough the number of stomach tumor patients reduced obviously during last decades in western countries, but this illness is still one of the main causes of death in developing countries. The aim of this research is to detect the area of a tumor in a stomach images based on fuzzy clustering. The proposed methodology consists of three stages. The stomach images are divided into four quarters and then features elicited from each quarter in the first stage by utilizing seven moments invariant. Fuzzy C-Mean clustering (FCM) was employed in the second stage for each quarter to collect the features of each quarter into clusters. Manhattan distance was calculated in the third stage among all clusters' centers in all quarters to disclosure of t
... Show MoreNatural dye sensitized solar cell was prepared using strawberry and pomegranate dyes with anatase nanocrystalline titanium dioxide powder. A study of the optical properties of the two dyes, involving the absorption spectrum was determined in the visible region. I-V characteristics under illumination were performed. The results showed that the two prepared dye sensitized solar cells have acceptable values efficiency about (0.94 with Fill factor (45)) and (0.74 with Fill factor (44)) for strawberry and pomegranate dyes, respectively.
XML is being incorporated into the foundation of E-business data applications. This paper addresses the problem of the freeform information that stored in any organization and how XML with using this new approach will make the operation of the search very efficient and time consuming. This paper introduces new solution and methodology that has been developed to capture and manage such unstructured freeform information (multi information) depending on the use of XML schema technologies, neural network idea and object oriented relational database, in order to provide a practical solution for efficiently management multi freeform information system.