Background: Angiogenesis is defined as the formation of new blood vessels. However, angiogenesis in cancer will lead to tumour growth and metastasis. Therefore, anti-angiogenesis is one of the ways to slow down growth and spreading of tumour. Moringa oleifera is also known as a “Miracle tree” which has high nutritive value and various therapeutics effect in different parts of the plant. This study aims to determine the anti-angiogenic property of Moringa oleifera leaves extract by using chick chorioallantoic membrane (CAM) assay. Materials and Methods: The extracts were prepared by decoction method using methanol and water. The qualitative phytochemical screening was carried out for both methanol and aqueous extracts. The fertilised chicken eggs were divided into six groups which include negative control group (phosphate-buffer saline with pH 7.4), positive control group (sunitinib), 50% and 100% methanol extract, 50% and 100% aqueous extract. The anti-angiogenic effect of Moringa oleifera leaves extract was determined by calculating the number and percentage decrease in blood vessels in post-24 and post-48 hours of treatment. Results: Statistical analysis by one-way ANOVA has shown significant (p<0.05) percentage reduction in the blood vessels between each treatment group after 48 hours of treatment. Among all the extracts, 100% aqueous extract of Moringa oleifera was found to have highest anti-angiogenic effect with the greater percentage decrease in blood vessels (81.33%) in post-48 hours of treatment. Furthermore, the anti-angiogenic effect of Moringa oleifera leaves was found to increased when the concentration of the Moringa oleifera extract was increased. Conclusion: Moringa oleifera leaves with various phytochemicals was found to possess anti-angiogenic potential.
Text categorization refers to the process of grouping text or documents into classes or categories according to their content. Text categorization process consists of three phases which are: preprocessing, feature extraction and classification. In comparison to the English language, just few studies have been done to categorize and classify the Arabic language. For a variety of applications, such as text classification and clustering, Arabic text representation is a difficult task because Arabic language is noted for its richness, diversity, and complicated morphology. This paper presents a comprehensive analysis and a comparison for researchers in the last five years based on the dataset, year, algorithms and the accuracy th
... Show MoreCladophora and Spirulina algae biomass have been used for the removal of Tetracycline (TC) antibiotic from aqueous solution. Different operation conditions were varied in batch process, such as initial antibiotic concentration, different biomass dosage and type, contact time, agitation speed, and initial pH. The result showed that the maximum removal efficiencies by using 1.25 g/100 ml Cladophora and 0.5 g/100 ml Spirulina algae biomass were 95% and 94% respectively. At the optimum experimental condition of temperature 25°C, initial TC concentration 50 mg/l, contact time 2.5hr, agitation speed 200 rpm and pH 6.5. The characterization of Cladophora and Spirulina biomass by Fourier transform infrared (FTIR) indicates that the presenc
... Show MoreIn aspect-based sentiment analysis ABSA, implicit aspects extraction is a fine-grained task aim for extracting the hidden aspect in the in-context meaning of the online reviews. Previous methods have shown that handcrafted rules interpolated in neural network architecture are a promising method for this task. In this work, we reduced the needs for the crafted rules that wastefully must be articulated for the new training domains or text data, instead proposing a new architecture relied on the multi-label neural learning. The key idea is to attain the semantic regularities of the explicit and implicit aspects using vectors of word embeddings and interpolate that as a front layer in the Bidirectional Long Short-Term Memory Bi-LSTM. First, we
... Show MoreWildfire risk has globally increased during the past few years due to several factors. An efficient and fast response to wildfires is extremely important to reduce the damaging effect on humans and wildlife. This work introduces a methodology for designing an efficient machine learning system to detect wildfires using satellite imagery. A convolutional neural network (CNN) model is optimized to reduce the required computational resources. Due to the limitations of images containing fire and seasonal variations, an image augmentation process is used to develop adequate training samples for the change in the forest’s visual features and the seasonal wind direction at the study area during the fire season. The selected CNN model (Mob
... Show MoreCollaborative learning in class‐based teaching presents a challenge for a tutor to ensure every group and individual student has the best learning experience. We present Group Tagging, a web application that supports reflection on collaborative, group‐based classroom activities. Group Tagging provides students with an opportunity to record important moments within the class‐based group work and enables reflection on and promotion of professional skills such as communication, collaboration and critical thinking. After class, students use the tagged clips to create short videos showcasing their group work activities, which can later be reviewed by the teacher. We report on a deployment of Group Tagging in an undergraduate Computing Scie
... Show MoreIn this work, a magnetic switch was prepared using two typesof ferrofluid materials, the pure ferrofluid and ferrofluid doped with copper nanoparticles (10 nm). The critical magnetic field (Hc) and the state of magnetic saturation (Hs) were studied using three types of laser sources. The main parameters of the magnetic switch measured using pure ferrofluid and He-Ne Laser source were Hc(0.5 mv, 0.4 G), Hs (8.5 mv, 3 G). For the ferrofluid doped with copper nanoparticles were Hc (1 mv, 4 G), Hs (15 mv, 9.6 G), Using green semiconductor laser for the Pure ferrofluid were Hc (0.5 mv, 0.3 G) Hs (15 mv, 2.9 G). While the ferrofluid doped with copper nanoparticles were Hc (0.5 mv, 1 G), Hs (12 mv, 2.8 G) and by using the violet semiconductor l
... Show MoreDecision-making in Operations Research is the main point in various studies in our real-life applications. However, these different studies focus on this topic. One drawback some of their studies are restricted and have not addressed the nature of values in terms of imprecise data (ID). This paper thus deals with two contributions. First, decreasing the total costs by classifying subsets of costs. Second, improving the optimality solution by the Hungarian assignment approach. This newly proposed method is called fuzzy sub-Triangular form (FS-TF) under ID. The results obtained are exquisite as compared with previous methods including, robust ranking technique, arithmetic operations, magnitude ranking method and centroid ranking method. This
... Show MoreCompanies seek to enhance investor confidence by achieving the highest level of transparency in disclosure of financial and non-financial information (SASB standards) for Iraqi insurance companies listed on the financial market. The aim of the research is to identify the extent of the ability of financial and non-financial information to enhance transparency in reporting, which is reflected in Investor confidence. And the standards of sustainability development accounting issued by (SASB) through the electronic questionnaire that was distributed. Companies seek to achieve a set of goals, the most important of which is to enhance investor confidence by improving transparency in disclosure. Concerning the employment of financial an
... Show More