Flow-production systems whose pieces are connected in a row may not have maintenance scheduling procedures fixed because problems occur at different times (electricity plants, cement plants, water desalination plants). Contemporary software and artificial intelligence (AI) technologies are used to fulfill the research objectives by developing a predictive maintenance program. The data of the fifth thermal unit of the power station for the electricity of Al Dora/Baghdad are used in this study. Three stages of research were conducted. First, missing data without temporal sequences were processed. The data were filled using time series hour after hour and the times were filled as system working hours, making the volume of the data relatively high for 2015-2016-2017. 2018 was utilized as a test year to assess the modeling work and validate the experimental results. In the second step, the artificial neural networks approach employs the python program as an AI, and the affinity ratio of real data using the performance measurement of the mean absolute error (MAE) was 0.005. To improve and reduce the value of absolute error, the genetic algorithm uses the python program and the convergence ratio became 0.001. It inferred that the algorithm is efficient in improving results. Thus, the genetic algorithm provided better results with fewer errors than the neural network alone. This concludes that the shown network has superior performance over others and the possibility of its long-term predictions for 2030. A Sing time series helped detect future cases by reading and inferring system data. The development of appropriate work plans will lower internal and external expenses of the systems and help integrate other capabilities by giving correct data sources of raw materials, costs, etc. To facilitate prediction for maintenance workers, an interface has been created that facilitates users to apply them using the python program represented by entering the times, an hour, a day, a month, a year, to predict the type and place of failure.
The increase globally fossil fuel consumption as it represents the main source of energy around the world, and the sources of heavy oil more than light, different techniques were used to reduce the viscosity and increase mobility of heavy crude oil. this study focusing on the experimental tests and modeling with Back Feed Forward Artificial Neural Network (BFF-ANN) of the dilution technique to reduce a heavy oil viscosity that was collected from the south- Iraq oil fields using organic solvents, organic diluents with different weight percentage (5, 10 and 20 wt.% ) of (n-heptane, toluene, and a mixture of different ratio
... Show MoreAdverse drug reactions (ADR) are important information for verifying the view of the patient on a particular drug. Regular user comments and reviews have been considered during the data collection process to extract ADR mentions, when the user reported a side effect after taking a specific medication. In the literature, most researchers focused on machine learning techniques to detect ADR. These methods train the classification model using annotated medical review data. Yet, there are still many challenging issues that face ADR extraction, especially the accuracy of detection. The main aim of this study is to propose LSA with ANN classifiers for ADR detection. The findings show the effectiveness of utilizing LSA with ANN in extracting AD
... Show MoreIn today’s competitive environment, organizational efficiency and sustained growth are crucial for survival. The performance of an organization is intricately connected to strategic planning, prompting firms to gather and leverage competitive information for a competitive advantage. Senior managers, recognizing this, initiate actions accordingly. This study aims to investigate the relationship between foresight, vision, strategic partnerships, motivation, system thinking, and organizational performance. Data, gathered through a self-administered questionnaire from various textile units, were analysed using structural equation modelling (SEM). The findings indicate that sub-constructs of strategic intelligence positively impact organizatio
... Show MoreArtificial Neural Networks (ANN) is one of the important statistical methods that are widely used in a range of applications in various fields, which simulates the work of the human brain in terms of receiving a signal, processing data in a human cell and sending to the next cell. It is a system consisting of a number of modules (layers) linked together (input, hidden, output). A comparison was made between three types of neural networks (Feed Forward Neural Network (FFNN), Back propagation network (BPL), Recurrent Neural Network (RNN). he study found that the lowest false prediction rate was for the recurrentt network architecture and using the Data on graduate students at the College of Administration and Economics, Univer
... Show MoreMany of researchers have written about social responsibility and business strategy and competitive advantage, and they have given particular attention to the relationship between economic and social responsibility , but what is missing in this aspect is how the economic units that use their core competencies to advance social responsibility initiatives so that they can achieve a significant competitive advantage and create value for it ?
The current research aims to verify the view that "the economic and social objectives in the long term is not contradictory in nature but complementary objectives essential", as well as make sure that the s
... Show MoreThe research aims to analyze the impact of exchange rate fluctuations (EXM and EXN) and inflation (INF) on the gross domestic product (GDP) in Iraq for the period 1988-2020. The research is important by analyzing the magnitude of the macroeconomic and especially GDP effects of these variables, as well as the economic effects of exchange rates on economic activity. The results of the standard analysis using the ARDL model showed a long-term equilibrium relationship, according to the Bound Test methodology, from explanatory (independent) variables to the internal (dependent) variable, while the value of the error correction vector factor was negative and moral at a level less than (1%). The relationship bet
... Show MoreFeature selection (FS) constitutes a series of processes used to decide which relevant features/attributes to include and which irrelevant features to exclude for predictive modeling. It is a crucial task that aids machine learning classifiers in reducing error rates, computation time, overfitting, and improving classification accuracy. It has demonstrated its efficacy in myriads of domains, ranging from its use for text classification (TC), text mining, and image recognition. While there are many traditional FS methods, recent research efforts have been devoted to applying metaheuristic algorithms as FS techniques for the TC task. However, there are few literature reviews concerning TC. Therefore, a comprehensive overview was systematicall
... Show MoreThis paper presents a three-dimensional Dynamic analysis of a rockfill dam with different foundation depths by considering the dam connection with both the reservoir bed and water. ANSYS was used to develop the three-dimensional Finite Element (FE) model of the rockfill dam. The essential objective of this study is the discussion of the effects of different foundation depths on the Dynamic behaviour of an embanked dam. Four foundation depths were investigated. They are the dam without foundation (fixed base), and three different depths of the foundation. Taking into consideration the changing of upstream water level, the empty, minimum, and maximum water levels, the results of the three-dimensional F