Flow-production systems whose pieces are connected in a row may not have maintenance scheduling procedures fixed because problems occur at different times (electricity plants, cement plants, water desalination plants). Contemporary software and artificial intelligence (AI) technologies are used to fulfill the research objectives by developing a predictive maintenance program. The data of the fifth thermal unit of the power station for the electricity of Al Dora/Baghdad are used in this study. Three stages of research were conducted. First, missing data without temporal sequences were processed. The data were filled using time series hour after hour and the times were filled as system working hours, making the volume of the data relatively high for 2015-2016-2017. 2018 was utilized as a test year to assess the modeling work and validate the experimental results. In the second step, the artificial neural networks approach employs the python program as an AI, and the affinity ratio of real data using the performance measurement of the mean absolute error (MAE) was 0.005. To improve and reduce the value of absolute error, the genetic algorithm uses the python program and the convergence ratio became 0.001. It inferred that the algorithm is efficient in improving results. Thus, the genetic algorithm provided better results with fewer errors than the neural network alone. This concludes that the shown network has superior performance over others and the possibility of its long-term predictions for 2030. A Sing time series helped detect future cases by reading and inferring system data. The development of appropriate work plans will lower internal and external expenses of the systems and help integrate other capabilities by giving correct data sources of raw materials, costs, etc. To facilitate prediction for maintenance workers, an interface has been created that facilitates users to apply them using the python program represented by entering the times, an hour, a day, a month, a year, to predict the type and place of failure.
This deals with estimation of Reliability function and one shape parameter (?) of two- parameters Burr – XII , when ?(shape parameter is known) (?=0.5,1,1.5) and also the initial values of (?=1), while different sample shze n= 10, 20, 30, 50) bare used. The results depend on empirical study through simulation experiments are applied to compare the four methods of estimation, as well as computing the reliability function . The results of Mean square error indicates that Jacknif estimator is better than other three estimators , for all sample size and parameter values
This research aims to clarify the importance of an accounting information system that uses artificial intelligence to detect earnings manipulation. The research problem stems from the widespread manipulation of earning in economic entities, especially at the local level, exacerbated by the high financial and administrative corruption rates in Iraq due to fraudulent accounting practices. Since earning manipulation involves intentional fraudulent acts, it is necessary to implement preventive measures to detect and deter such practices. The main hypothesis of the research assumes that an accounting information system based on artificial intelligence cannot effectively detect the manipulation of profits in Iraqi economic entities. The researche
... Show MoreThis research examines the future of television work in light of the challenges posed by artificial intelligence (AI). The study aims to explore the impact of AI on the form and content of television messages and identify areas where AI can be employed in television production. This study adopts a future-oriented exploratory approach, utilizing survey methodology. As the research focuses on foresight, the researcher gathers the opinions of AI experts and media specialists through in-depth interviews to obtain data and insights. The researcher selected 30 experts, with 15 experts in AI and 15 experts in media. The study reveals several findings, including the potential use of machine learning, deep learning, and na
... Show MoreMixing this strategy with a qualitative research design and an idea known as AI-supported journalism, the paper is going to approach the requirements of how AI technologies may transform journalism content and culture in a way beyond what one anticipates; therefore, enabling more of it to reach an audience. The current research used descriptive research design to investigate the potential applications of the AI tools that mediate civilizational conversation and a structured questionnaire to media professionals. AI-driven journalism can promote peaceful cohabitation and mutual respect and thus act as a bridge between cultures, the research said. The piece even goes on to mention the need for media establishments and civil soc
... Show MoreLean Six Sigma methodologies and Ergonomics principles are the main pillars of this work given their importance in the implementation of continuous improvement in assembly workstations design. When looking at the introduction of the Ergonomics that has been affected by the integration of the Lean and Six Sigma for improvements, it is necessary to understand why these methodologies belong to each other and how they can be handled in the industrial field. The aim of the work seeks towards the impact of analyzing the integration of the basics tools of Lean and Six Sigma that enhanced Ergonomics highlighted the importance of using the priority matrix in the selection of the priority criteria. Two models of a system based on
... Show MoreDeep learning (DL) plays a significant role in several tasks, especially classification and prediction. Classification tasks can be efficiently achieved via convolutional neural networks (CNN) with a huge dataset, while recurrent neural networks (RNN) can perform prediction tasks due to their ability to remember time series data. In this paper, three models have been proposed to certify the evaluation track for classification and prediction tasks associated with four datasets (two for each task). These models are CNN and RNN, which include two models (Long Short Term Memory (LSTM)) and GRU (Gated Recurrent Unit). Each model is employed to work consequently over the two mentioned tasks to draw a road map of deep learning mod
... Show MoreIraq depends mainly on Tigris and Euphrates Rivers to provide high percentage of agricultural water use for thousands years. At last years, Iraq is suffering from shortage in water resources due to global climate changes and unfair water politics of the neighboring countries, which affected the future of agriculture plans for irrigation, added to that the lack of developed systems of water management in the irrigation projects and improper allocation of irrigation water, which reduces water use efficiency and lead to losing irrigation water and decreasing in agricultural yield. This study aims at studying the usability of irrigation and leaching scheduling within the irrigating projects and putting a complete annual or seasonal irrigatio
... Show MoreThis contribution aims to investigate volume-dependent thermal and mechanical properties of the two most studied phases of molybdenum nitride (c-MoN and h-MoN) by means of the quasi-harmonic approximation approach (QHA) via first-principles calculations up to their melting point and a pressure of 12 GPa. Lattice constants, band gaps, and bulk modulus at 0 K match corresponding experimental measurements well. Calculated Bader’s charges indicate that Mo–N bonds exhibit a more ionic nature in the cubic MoN phase. Based on estimated Gibbs free energies, the cubic phase presents thermodynamic stability higher than that detected for hexagonl, with no phase transition observed in the selected T–P conditions as detected experimentall
... Show MoreThe aim of this paper is to present a new methodology to find the private key of RSA. A new initial value which is generated from a new equation is selected to speed up the process. In fact, after this value is found, brute force attack is chosen to discover the private key. In addition, for a proposed equation, the multiplier of Euler totient function to find both of the public key and the private key is assigned as 1. Then, it implies that an equation that estimates a new initial value is suitable for the small multiplier. The experimental results show that if all prime factors of the modulus are assigned larger than 3 and the multiplier is 1, the distance between an initial value and the private key
... Show More