This paper considers approximate solution of the hyperbolic one-dimensional wave equation with nonlocal mixed boundary conditions by improved methods based on the assumption that the solution is a double power series based on orthogonal polynomials, such as Bernstein, Legendre, and Chebyshev. The solution is ultimately compared with the original method that is based on standard polynomials by calculating the absolute error to verify the validity and accuracy of the performance.
Abstract:In this paper, some probability characteristics functions (moments, variances,convariance, and spectral density functions) are found depending upon the smallestvariance of the solution of some stochastic Fredholm integral equation contains as aknown function, the sine wave function
ABSTRICT:
This study is concerned with the estimation of constant and time-varying parameters in non-linear ordinary differential equations, which do not have analytical solutions. The estimation is done in a multi-stage method where constant and time-varying parameters are estimated in a straight sequential way from several stages. In the first stage, the model of the differential equations is converted to a regression model that includes the state variables with their derivatives and then the estimation of the state variables and their derivatives in a penalized splines method and compensating the estimations in the regression model. In the second stage, the pseudo- least squares method was used to es
... Show MoreIn this paper, two meshless methods have been introduced to solve some nonlinear problems arising in engineering and applied sciences. These two methods include the operational matrix Bernstein polynomials and the operational matrix with Chebyshev polynomials. They provide an approximate solution by converting the nonlinear differential equation into a system of nonlinear algebraic equations, which is solved by using
In this paper, two meshless methods have been introduced to solve some nonlinear problems arising in engineering and applied sciences. These two methods include the operational matrix Bernstein polynomials and the operational matrix with Chebyshev polynomials. They provide an approximate solution by converting the nonlinear differential equation into a system of nonlinear algebraic equations, which is solved by using
In this work, the finite element analysis of moving coordinates has been used to study the thermal behavior of the tissue subjected to both continuous wave and pulsed CO2 laser. The results are compared with previously published data, and a good agreement has been found, which verifies the implemented theory. Some conclusions are obtained; As pulse width decreases, or repetition rate increases, or fluence increases then the char depth is decreased which can be explained by an increase in induced energy or its rate, which increases the ablation rate, leading to a decrease in char depth. Thus: An increase in the fluence or decreasing pulse width or increasing repetition rate will increase ablation rate, which will increase the depth of cut
... Show MoreFiber‐reinforced elastic laminated composites are extensively used in several domains owing to their high specific stiffness and strength and low specific density. Several studies were performed to ascertain the factors that affect the composite plates’ dynamic properties. This study aims to derive a mathematical model for the dynamic response of the processed composite material in the form of an annular circular shape made of polyester/E‐glass composite. The mathematical model was developed based on modified classical annular circular plate theory under dynamic loading, and all its formulas were solved using MATLAB 2023. The mathematical model was also verified with real experimental work involving the vibration test of the f
... Show MoreTwo tests were carried out to measure the standard flat fan nozzles wear during a specific period of an accelerated wear procedure. The first test aimed at getting 10% increase in the flow rate compared to the nominal flow rate, which is the threshold to replace the nozzles according to the nozzles testing standards. The second test was to wear the nozzles intensively (100 hours of accelerated wear), which represents the use of nozzles beyond the allowed threshold. The results showed that the flow rate reached 1.31 l·min−1 (equal to 10% increase) for the tested nozzles after 35 hours of the wear test. For the second test, the 10% increase of the flow rate was r
This paper is concerned with the blow-up solutions of a system of two reaction-diffusion equations coupled in both equations and boundary conditions. In order to understand how the reaction terms and the boundary terms affect the blow-up properties, the lower and upper blow-up rate estimates are derived. Moreover, the blow-up set under some restricted assumptions is studied.
Through this article, we studied the peristaltic motion of “Hyperbolic Tangent” fluid in the geometry of curvature channel by using the analysis of large wavelength and less of Reynolds number. The matter has controlled mathematically by the partial differential equations of continuity, motion, heat transfer. In the study, we used the impact of radial magnetic force. The obtained coupled non-linear equations of above equations have solved by an approximation technical. Locked formula solutions of the stream function, axial velocity, heat function has evaluated. The influence of curvature is analysed and took it into account. The impact of sundry variables on the inflow features ha