Preferred Language
Articles
/
ZEKLGZsBMeyNPGM35ddS
Effective computational methods for solving the hyperbolic one-dimensional wave equation with nonlocal mixed boundary conditions
...Show More Authors

This paper considers approximate solution of the hyperbolic one-dimensional wave equation with nonlocal mixed boundary conditions by improved methods based on the assumption that the solution is a double power series based on orthogonal polynomials, such as Bernstein, Legendre, and Chebyshev. The solution is ultimately compared with the original method that is based on standard polynomials by calculating the absolute error to verify the validity and accuracy of the performance.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Jul 01 2012
Journal Name
International Journal Of Computer Mathematics
Numerical solution of the two-dimensional Helmholtz equation with variable coefficients by the radial integration boundary integral and integro-differential equation methods
...Show More Authors

View Publication
Crossref (12)
Crossref
Publication Date
Tue Oct 01 2024
Journal Name
Journal Of Physics: Conference Series
The operational matrices for Elliptic Partial Differential Equations with mixed boundary conditions
...Show More Authors
Abstract<p>The purpose of this research is to implement the orthogonal polynomials associated with operational matrices to get the approximate solutions for solving two-dimensional elliptic partial differential equations (E-PDEs) with mixed boundary conditions. The orthogonal polynomials are based on the Standard polynomial (<italic>x<sup>i</sup> </italic>), Legendre, Chebyshev, Bernoulli, Boubaker, and Genocchi polynomials. This study focuses on constructing quick and precise analytic approximations using a simple, elegant, and potent technique based on an orthogonal polynomial representation of the solution as a double power series. Consequently, a linear </p> ... Show More
View Publication
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Fme Transactions
Unsteady nonlinear panel method with mixed boundary conditions
...Show More Authors

A new panel method had been developed to account for unsteady nonlinear subsonic flow. Two boundary conditions were used to solve the potential flow about complex configurations of airplanes. Dirichlet boundary condition and Neumann formulation are frequently applied to the configurations that have thick and thin surfaces respectively. Mixed boundary conditions were used in the present work to simulate the connection between thick fuselage and thin wing surfaces. The matrix of linear equations was solved every time step in a marching technique with Kelvin's theorem for the unsteady wake modeling. To make the method closer to the experimental data, a Nonlinear stripe theory which is based on a two-dimensional viscous-inviscid interac

... Show More
View Publication
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Thu Dec 21 2023
Journal Name
Mathematical Modelling Of Engineering Problems
Recovering Time-Dependent Coefficients in a Two-Dimensional Parabolic Equation Using Nonlocal Overspecified Conditions via ADE Finite Difference Schemes
...Show More Authors

View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Fri May 01 2020
Journal Name
Journal Of Physics: Conference Series
New Approach for Solving (1+1)-Dimensional Differential Equation
...Show More Authors

View Publication Preview PDF
Scopus (18)
Crossref (9)
Scopus Crossref
Publication Date
Mon Sep 23 2019
Journal Name
Baghdad Science Journal
New Approach for Solving Three Dimensional Space Partial Differential Equation
...Show More Authors

This paper presents a new transform method to solve partial differential equations, for finding suitable accurate solutions in a wider domain. It can be used to solve the problems without resorting to the frequency domain. The new transform is combined with the homotopy perturbation method in order to solve three dimensional second order partial differential equations with initial condition, and the convergence of the solution to the exact form is proved. The implementation of the suggested method demonstrates the usefulness in finding exact solutions. The practical implications show the effectiveness of approach and it is easily implemented in finding exact solutions.

       Finally, all algori

... Show More
View Publication Preview PDF
Scopus (23)
Crossref (10)
Scopus Clarivate Crossref
Publication Date
Sun Mar 01 2020
Journal Name
Gazi University Journal Of Science
Reliable Iterative Methods for Solving the Falkner-Skan Equation
...Show More Authors

View Publication
Crossref (8)
Crossref
Publication Date
Mon Aug 14 2017
Journal Name
International Journal Of Intelligent Computing And Cybernetics
Two efficient methods for solving Schlömilch’s integral equation
...Show More Authors
Purpose

In this paper, the exact solutions of the Schlömilch’s integral equation and its linear and non-linear generalized formulas with application are solved by using two efficient iterative methods. The Schlömilch’s integral equations have many applications in atmospheric, terrestrial physics and ionospheric problems. They describe the density profile of electrons from the ionospheric for awry occurrence of the quasi-transverse approximations. The paper aims to discuss these issues.

Design/methodology/approach

First, the authors apply a regularization meth

... Show More
View Publication
Crossref (3)
Crossref
Publication Date
Sun Sep 06 2009
Journal Name
Baghdad Science Journal
Extension of the Chebyshev Method of Quassi-Linear Parabolic P.D.E.S With Mixed Boundary Conditions
...Show More Authors

The researcher [1-10] proposed a method for computing the numerical solution to quasi-linear parabolic p.d.e.s using a Chebyshev method. The purpose of this paper is to extend the method to problems with mixed boundary conditions. An error analysis for the linear problem is given and a global element Chebyshev method is described. A comparison of various chebyshev methods is made by applying them to two-point eigenproblems. It is shown by analysis and numerical examples that the approach used to derive the generalized Chebyshev method is comparable, in terms of the accuracy obtained, with existing Chebyshev methods.

View Publication Preview PDF
Crossref
Publication Date
Mon May 12 2025
Journal Name
Boundary Value Problems
Minimal wave speed and traveling wave in nonlocal dispersion SIS epidemic model with delay
...Show More Authors

This study examines traveling wave solutions of the SIS epidemic model with nonlocal dispersion and delay. The research shows that a key factor in determining whether traveling waves exist is the basic reproduction number R0. In particular, the system permits nontrivial traveling wave solutions for σ≥σ∗ for R0>1, whereas there are no such solutions for σ<σ∗. This is because there is a minimal wave speed σ∗>0. On the other hand, there are no traveling wave solutions when R0≤1. In conclusion, we provide several numerical simulations that illustrate the existence of TWS.

View Publication Preview PDF
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref