Green buildings are considered more efficient than traditional buildings due to the incorporated techniques and the multidisciplinary specializations required to comply with their specifications, in addition to the advanced commissioning, which undergoes before handing over the buildings to the owners to ensure requirements conformance. As a result, the appropriate selection of a project delivery system acts as the essential factor that affects the performance of the project. This research aims at building a system that helps to select the best method to implement green buildings. Through studying the recent research approaches in project delivery systems, the factors that affect the selection of the optimal implementation method for green buildings have been identified; expert interviews have been done to study and analyze the main influential factors that affect the selection of the best method for implementing green buildings. The results of interviews indicate that the main influential factors are as follows: The occurrence of economic crises in the country, availability of financial capacity for the contractor and the owner, the lack of previous experience in similar projects, hiring an incompetent contractor, differences between design drawings among all disciplines, and providing qualified contractors, subcontractors, suppliers and craftsmen with sufficient qualifications early in the project. Depending on these main factors, a software system is built to choose the best delivery system for green building projects. This research encourages future works to focus on the quality and performance of green buildings and lays out the foundation for academic researchers to explore new techniques for evaluating the project delivery systems as well as supporting the decision-makers to choose the best.
Shatt Al-Hilla branches from the left of Euphrates River, U/S Hindiyah Barrage, Iraq, and extends about 100 km. It branches at the end into Shatt Al-Diwaniya 112 km and Shatt Al-Daghara 64 km. The study aims to evaluate and develop (Hilla-Daghara) rivers system, which is included Shatt Al-Hilla and Shatt Al-Daghara. Fieldwork began from (26 October until December) 2020. M9, S5 devices, and the installed staff gauges were used to measure discharges and water levels, respectively. A one-dimensional model was developed for the study area by HEC-RAS, after calibration and verification by field measurements; the Manning's n of Shatt Al-Daghara is found to be 0.022. Five Scenarios were simulated to study the reach under the cu
... Show MoreIn light of today's business world, who faces challenges and intense competition as a result of the rapid evolution of technical and informational, organizations had to respond to variables through the adoption of modern management techniques that reduce the effects of risks and activating the role of the internal control system in order to contribute to the early detection of risks and reduce the negative results expected .The research is to address the problem faced by organizations which still follow the traditional methods in the control activities, and the lack of knowledge of the management and their staff of the importance of the existence of risk management and internal control system takes into account these risks, and the limit
... Show MoreMedicine is one of the fields where the advancement of computer science is making significant progress. Some diseases require an immediate diagnosis in order to improve patient outcomes. The usage of computers in medicine improves precision and accelerates data processing and diagnosis. In order to categorize biological images, hybrid machine learning, a combination of various deep learning approaches, was utilized, and a meta-heuristic algorithm was provided in this research. In addition, two different medical datasets were introduced, one covering the magnetic resonance imaging (MRI) of brain tumors and the other dealing with chest X-rays (CXRs) of COVID-19. These datasets were introduced to the combination network that contained deep lea
... Show MoreAlthough renewable energy systems have become an interesting global issue, it is not continuous either daily or seasonally. Latent heat energy storage (LHES) is one of the suitable solutions for this problem. LHES becomes a basic element in renewable energy systems. LHES compensate for the energy lack when these systems are at low production conditions. The present work considered a shell and tube LHES for numerical investigation of the tube rotation influence on the melting process. The simulation and calculations were carried out using ANSYS Fluent software. Paraffin wax represents the phase change material (PCM) in this work, while water was selected to be the heat transfer fluid (HTF). The calculations were carried o
... Show MoreThermal energy storage is an important component in energy units to decrease the gap between energy supply and demand. Free convection and the locations of the tubes carrying the heat-transfer fluid (HTF) have a significant influence on both the energy discharging potential and the buoyancy effect during the solidification mode. In the present study, the impact of the tube position was examined during the discharging process. Liquid-fraction evolution and energy removal rate with thermo-fluid contour profiles were used to examine the performance of the unit. Heat exchanger tubes are proposed with different numbers and positions in the unit for various cases including uniform and non-uniform tubes distribution. The results show that
... Show MoreSummary:The anatomy of the arterial and venous vessels of the mammalian oviduct is well describedin women and in laboratory and farm animals. The arteries are derived from the ovarian anduterine stems; the relative contribution of these vessels, however, or variations in that contributionwith the menstrual or estrus cycle and/or gamete or embryo transport is unknown.
Fluid-structure interaction method is performed to predict the dynamic characteristics of axial fan system. A fluid-structure interface physical environment method (monolithic method) is used to couple the fluid flow solver with the structural solver. The integration of the three-dimensional Navier-Stokes equations is performed in the time Doman, simultaneously to the integration of the three dimensional structural model. The aerodynamic loads are transfer from the flow to structure and the coupling step is repeated within each time step, until the flow solution and the structural solution have converged to yield a coupled solution of the aeroelastic set of equations. Finite element method is applied to solve numerically
... Show MoreIn this paper the effect of mixing TiO2 nanoparticles with epoxy resin is studied. The TiO2 nanoparticles would be synthesis and characterized by scanning electron microscopy (SEM), XRD FTIR, for two particle sizes of 50 and 25 nm. The thermal conductivity is measured with and without composite epoxy resin; the results showed that the thermal conductivity was increased as nanoparticle concentration increased too. The thermal conductivity was increased as particle size decreased.
This paper presents a new approach to discover the effect of depth water for underwater visible light communications (UVLC). The quality of the optical link was investigated with varying water depth under coastal water types. The performance of the UVLC with multiple input–multiple output (MIMO) techniques was examined in terms of bit error rate (BER) and data rate. The theoretical result explains that there is a good performance for UVLC system under coastal water.