Gumbel distribution was dealt with great care by researchers and statisticians. There are traditional methods to estimate two parameters of Gumbel distribution known as Maximum Likelihood, the Method of Moments and recently the method of re-sampling called (Jackknife). However, these methods suffer from some mathematical difficulties in solving them analytically. Accordingly, there are other non-traditional methods, like the principle of the nearest neighbors, used in computer science especially, artificial intelligence algorithms, including the genetic algorithm, the artificial neural network algorithm, and others that may to be classified as meta-heuristic methods. Moreover, this principle of nearest neighbors has useful statistical featu
... Show MoreThe objective of the research is to clarify the grants and aids as a conceptual input, identify the factors of obtaining them and their objectives, and the statement of the need to produce accounting information that enhances financial reporting related to grants and assistance, especially the presentation of the accounting treatments provided by the unified accounting system and determining the shortcomings of that system, The accounting requirements of IAS20 to limit the variation of treatments with application to the economic unit (the research sample) are presented.
The study reached a set of conclusions, the most important of which is the absence of an accounting base in Iraq that determines the basi
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MorePhysiological status and litter size can indeed have a significant impact on ewes' hematological parameters, which are essential indicators of their health. Therefore, this study examined the hematological profiles of ewes during pregnancy with single and twins in the Awassi ewes. The present study involved 232 ewes in good health and at sexual maturity. Among them, 123 ewes had single pregnancies, while 109 ewes had twin pregnancies. The age range of the ewes included in the study was between 3.5 and 4.5 years. Hematological tests were conducted on the sheep's blood samples promptly following collection. The findings demonstrated variations in hematological parameters among pregnant
... Show MorePortland cement concrete is the most commonly used construction material in the world for decades. However, the searches in concrete technology are remaining growing to meet particular properties related to its strength, durability, and sustainability issue. Thus, several types of concrete have been developed to enhance concrete performance. Most of the modern concrete types have to contain supplementary cementitious materials (SCMs) as a partial replacement of cement. These materials are either by-products of waste such as fly ash, slag, rice husk ash, and silica fume or from a geological resource like natural pozzolans and metakaolin (MK). Ideally, the utilization of SCMs will enhance the concrete performance, minimize
... Show More