This study aims to conduct an exhaustive comparison between the performance of human translators and artificial intelligence-powered machine translation systems, specifically examining the top three systems: Spider-AI, Metacate, and DeepL. A variety of texts from distinct categories were evaluated to gain a profound understanding of the qualitative differences, as well as the strengths and weaknesses, between human and machine translations. The results demonstrated that human translation significantly outperforms machine translation, with larger gaps in literary texts and texts characterized by high linguistic complexity. However, the performance of machine translation systems, particularly DeepL, has improved and in some contexts approached that of human performance. The distinct performance differences across various text categories suggest the potential for developing systems tailored to specific fields. These findings indicate that machine translation has the capacity to bridge the gap in translation productivity inefficiencies inherent in human translation, yet it still falls short of fully replicating human capabilities. In the future, a combination of human translation and machine translation systems is likely to be the most effective approach for leveraging the strengths of each and ensuring optimal performance. This study contributes empirical support and findings that can aid in the development and future research in the field of machine translation and translation studies. Despite some limitations associated with the corpus used and the systems analysed, where the focus was on English and texts within the field of machine translation, future studies could explore more extensive linguistic sampling and evaluation of human effort. The collaborative efforts of specialists in artificial intelligence, translation studies, linguistics, and related fields can help achieve a world where linguistic diversity no longer poses a barrier.
In this paper, simulation studies and applications of the New Weibull-Inverse Lomax (NWIL) distribution were presented. In the simulation studies, different sample sizes ranging from 30, 50, 100, 200, 300, to 500 were considered. Also, 1,000 replications were considered for the experiment. NWIL is a fat tail distribution. Higher moments are not easily derived except with some approximations. However, the estimates have higher precisions with low variances. Finally, the usefulness of the NWIL distribution was illustrated by fitting two data sets
Research summary
Muslim scholars have established fundamental rules for deriving rulings to be a methodology for every mujtahid who wants to extract rulings from his reliable sources, and one of the most prominent fundamental rules on which many rulings are built is the permissible and the many rulings related to it.
Leaving what is permissible on its own terms sometimes causes embarrassment and distress in some cases, so we need something that restricts it. In our Islamic law, many legal rulings are embodied in which the restriction of what is permissible is in the public interest, or to relieve embarrassment in public.
Because of the importance of this fundamentalist rule, and the difference in some
... Show MoreThe main objective of this work is to propose a new routing protocol for wireless sensor network employed to serve IoT systems. The routing protocol has to adapt with different requirements in order to enhance the performance of IoT applications. The link quality, node depth and energy are used as metrics to make routing decisions. Comparison with other protocols is essential to show the improvements achieved by this work, thus protocols designed to serve the same purpose such as AODV, REL and LABILE are chosen to compare the proposed routing protocol with. To add integrative and holistic, some of important features are added and tested such as actuating and mobility. These features are greatly required by some of IoT applications and im
... Show MorePot experiment was carried out at the College of Agriculture – Baghdad University during autumn season, 2007. Thirteen treatments were formulated to evaluate the effectiveness of four applications of Phosphorus (0, 60, 60×2 and 120 Kg P. h-1) and three applications of Zinc (0, 25×2 mg Zn. L-1 and 50 mg Zn. Kg soil-1) along with inoculating seeds of bean with strains mixture 889 and 1865 and non-inoculated treatment, on nodulation, yield and protein content in seeds (N%). The results showed that inoculated plants exceeded on non-inoculated one in all the studied characteristics. While, P and Zn, applications at the rate of 60×2 kg/ha and 25×2 mg/L respectively, significantly, increased, nodulation, yield, protein content in se
... Show Moreدور التدقيق الاستراتيجي لإدارة الموارد البشرية في بلورة القدرات التنظيمية دراسة استطلاعية في رئاسة جامعة بغداد
Background: Nanotechnology represents a new science that promises to provide a broad range of uses and improved technologies for biological and biomedical applications. One of the reasons behind the intense interest is that nanotechnology permits synthesis of materials that have structure is less than 100 nanometers. The present work revealed the effect of zinc oxide nanoparticles (ZnO NPs) on Streptococcus mutans of Human Saliva in comparison to de-ionized water. Materials and methods: Streptococcus mutans were isolated from saliva of forty eight volunteers of both sexes their age range between 18-22 years and then purified and diagnosed according to morphological characteristic and biochemical tests. Different concentrations of ZnO NPs w
... Show MoreComputer models are used in the study of electrocardiography to provide insight into physiological phenomena that are difficult to measure in the lab or in a clinical environment.
The electrocardiogram is an important tool for the clinician in that it changes characteristically in a number of pathological conditions. Many illnesses can be detected by this measurement. By simulating the electrical activity of the heart one obtains a quantitative relationship between the electrocardiogram and different anomalies.
Because of the inhomogeneous fibrous structure of the heart and the irregular geometries of the body, finite element method is used for studying the electrical properties of the heart.
This work describes t
... Show More