Preferred Language
Articles
/
VBhwMpUBVTCNdQwCwSoD
Analyzing the behavior of different classification algorithms in diabetes prediction
...Show More Authors

<span lang="EN-US">Diabetes is one of the deadliest diseases in the world that can lead to stroke, blindness, organ failure, and amputation of lower limbs. Researches state that diabetes can be controlled if it is detected at an early stage. Scientists are becoming more interested in classification algorithms in diagnosing diseases. In this study, we have analyzed the performance of five classification algorithms namely naïve Bayes, support vector machine, multi layer perceptron artificial neural network, decision tree, and random forest using diabetes dataset that contains the information of 2000 female patients. Various metrics were applied in evaluating the performance of the classifiers such as precision, area under the curve (AUC), accuracy, receiver operating characteristic (ROC) curve, f-measure, and recall. Experimental results show that random forest is better than any other classifier in predicting diabetes with a 90.75% accuracy rate.</span>

Scopus Crossref
View Publication
Publication Date
Wed Jul 31 2019
Journal Name
Journal Of Engineering
A Comparative Study of Various Intelligent Optimization Algorithms Based on Path Planning and Neural Controller for Mobile Robot
...Show More Authors

In this paper, a cognitive system based on a nonlinear neural controller and intelligent algorithm that will guide an autonomous mobile robot during continuous path-tracking and navigate over solid obstacles with avoidance was proposed. The goal of the proposed structure is to plan and track the reference path equation for the autonomous mobile robot in the mining environment to avoid the obstacles and reach to the target position by using intelligent optimization algorithms. Particle Swarm Optimization (PSO) and Artificial Bee Colony (ABC) Algorithms are used to finding the solutions of the mobile robot navigation problems in the mine by searching the optimal paths and finding the reference path equation of the optimal

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Sat Mar 26 2022
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
Dual use of Altman financial failure prediction analysis and stress tests to achieve integration in banking risk management : Analytical study of the National Bank of Iraq
...Show More Authors

The research aims to demonstrate the dual use of analysis to predict financial failure according to the Altman model and stress tests to achieve integration in banking risk management. On the bank’s ability to withstand crises, especially in light of its low rating according to the Altman model, and the possibility of its failure in the future, thus proving or denying the research hypothesis, the research reached a set of conclusions, the most important of which (the bank, according to the Altman model, is threatened with failure in the near future, as it is located within the red zone according to the model’s description, and will incur losses if it is exposed to crises in the future according to the analysis of stress tests

... Show More
View Publication Preview PDF
Publication Date
Thu Nov 08 2018
Journal Name
Iraqi National Journal Of Nursing Specialties
Studying the Effect of Different Separating Medium on the Roughness of the tissue surface of Acrylic Denture Base (In Vitro Study)
...Show More Authors

Objective: In order to evaluate the effect of different typed of Separating Medium on the roughness of the fitted
tissue surface of acrylic denture base.
Methodology: Chosen three types of separating medium (Group A Tin foil), (Group B Detery Isolant),(Group C
Cold Mould Seal),used 30 samples of hot cure acrylic resin ,10 samples for each group, after complete curing of
these samples , Profilometer device was used to measure the surface roughness of each sample in all groups.
Results: Using One Way ANOVA Test and LSD test, the results were highly significant in differences among all
groups. Although (Group A) showing lest roughness, (Group B) showing a satisfactory result of roughness, While
(Group C) Showing the hig

... Show More
View Publication Preview PDF
Publication Date
Fri Nov 30 2018
Journal Name
Iop Conference Series: Materials Science And Engineering
Damage pattern scope prediction for well point dewatering on building foundations
...Show More Authors

View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Wed May 31 2023
Journal Name
Iraqi Geological Journal
Studying the Effect of Permeability Prediction on Reservoir History Matching by Using Artificial Intelligence and Flow Zone Indicator Methods
...Show More Authors

The map of permeability distribution in the reservoirs is considered one of the most essential steps of the geologic model building due to its governing the fluid flow through the reservoir which makes it the most influential parameter on the history matching than other parameters. For that, it is the most petrophysical properties that are tuned during the history matching. Unfortunately, the prediction of the relationship between static petrophysics (porosity) and dynamic petrophysics (permeability) from conventional wells logs has a sophisticated problem to solve by conventional statistical methods for heterogeneous formations. For that, this paper examines the ability and performance of the artificial intelligence method in perme

... Show More
View Publication
Scopus (5)
Crossref (2)
Scopus Crossref
Publication Date
Sun Jun 12 2011
Journal Name
Baghdad Science Journal
Satellite Images Unsupervised Classification Using Two Methods Fast Otsu and K-means
...Show More Authors

Two unsupervised classifiers for optimum multithreshold are presented; fast Otsu and k-means. The unparametric methods produce an efficient procedure to separate the regions (classes) by select optimum levels, either on the gray levels of image histogram (as Otsu classifier), or on the gray levels of image intensities(as k-mean classifier), which are represent threshold values of the classes. In order to compare between the experimental results of these classifiers, the computation time is recorded and the needed iterations for k-means classifier to converge with optimum classes centers. The variation in the recorded computation time for k-means classifier is discussed.

View Publication Preview PDF
Crossref
Publication Date
Sat Jun 01 2024
Journal Name
Alexandria Engineering Journal
U-Net for genomic sequencing: A novel approach to DNA sequence classification
...Show More Authors

The precise classification of DNA sequences is pivotal in genomics, holding significant implications for personalized medicine. The stakes are particularly high when classifying key genetic markers such as BRAC, related to breast cancer susceptibility; BRAF, associated with various malignancies; and KRAS, a recognized oncogene. Conventional machine learning techniques often necessitate intricate feature engineering and may not capture the full spectrum of sequence dependencies. To ameliorate these limitations, this study employs an adapted UNet architecture, originally designed for biomedical image segmentation, to classify DNA sequences.The attention mechanism was also tested LONG WITH u-Net architecture to precisely classify DNA sequences

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sat Apr 01 2023
Journal Name
Journal Of Engineering
Proposed Face Detection Classification Model Based on Amazon Web Services Cloud (AWS)
...Show More Authors

One of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services through our ca

... Show More
View Publication
Crossref (5)
Crossref
Publication Date
Sun Dec 31 2023
Journal Name
Iraqi Journal Of Information And Communication Technology
EEG Signal Classification Based on Orthogonal Polynomials, Sparse Filter and SVM Classifier
...Show More Authors

This work implements an Electroencephalogram (EEG) signal classifier. The implemented method uses Orthogonal Polynomials (OP) to convert the EEG signal samples to moments. A Sparse Filter (SF) reduces the number of converted moments to increase the classification accuracy. A Support Vector Machine (SVM) is used to classify the reduced moments between two classes. The proposed method’s performance is tested and compared with two methods by using two datasets. The datasets are divided into 80% for training and 20% for testing, with 5 -fold used for cross-validation. The results show that this method overcomes the accuracy of other methods. The proposed method’s best accuracy is 95.6% and 99.5%, respectively. Finally, from the results, it

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Sun Jun 20 2021
Journal Name
Baghdad Science Journal
Arabic Speech Classification Method Based on Padding and Deep Learning Neural Network
...Show More Authors

Deep learning convolution neural network has been widely used to recognize or classify voice. Various techniques have been used together with convolution neural network to prepare voice data before the training process in developing the classification model. However, not all model can produce good classification accuracy as there are many types of voice or speech. Classification of Arabic alphabet pronunciation is a one of the types of voice and accurate pronunciation is required in the learning of the Qur’an reading. Thus, the technique to process the pronunciation and training of the processed data requires specific approach. To overcome this issue, a method based on padding and deep learning convolution neural network is proposed to

... Show More
View Publication Preview PDF
Scopus (20)
Crossref (3)
Scopus Clarivate Crossref