Preferred Language
Articles
/
VBhwMpUBVTCNdQwCwSoD
Analyzing the behavior of different classification algorithms in diabetes prediction
...Show More Authors

<span lang="EN-US">Diabetes is one of the deadliest diseases in the world that can lead to stroke, blindness, organ failure, and amputation of lower limbs. Researches state that diabetes can be controlled if it is detected at an early stage. Scientists are becoming more interested in classification algorithms in diagnosing diseases. In this study, we have analyzed the performance of five classification algorithms namely naïve Bayes, support vector machine, multi layer perceptron artificial neural network, decision tree, and random forest using diabetes dataset that contains the information of 2000 female patients. Various metrics were applied in evaluating the performance of the classifiers such as precision, area under the curve (AUC), accuracy, receiver operating characteristic (ROC) curve, f-measure, and recall. Experimental results show that random forest is better than any other classifier in predicting diabetes with a 90.75% accuracy rate.</span>

Scopus Crossref
View Publication
Publication Date
Sat Jun 30 2001
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Combined Effect of Some Internal Ballisting Parameters on the Pressure Behavior of Solid Propellant Rocket Motor
...Show More Authors

View Publication Preview PDF
Publication Date
Fri May 01 2020
Journal Name
Journal Of Engineering
A Study of the Hydrodynamics Behavior of Cylindrical Gas-Solid Fluidized Beds for pharmaceutical material “Paracetamol “
...Show More Authors

The hydrodynamics behavior of gas - solid fluidized beds is complex and it should be analyzed  and understood due to its importance in the design and operating of the units. The effect of column inside diameter and static bed height on the minimum fluidization velocity, minimum bubbling velocity, fluidization index, minimum slugging velocity and slug index have been studied experimentally and theoretically for three cylindrical columns of 0.0762, 0.15 and 0.18 m inside diameters  and 0.05, 0.07 and 0.09 m static bed heights .The experimental results showed that the minimum fluidization and bubbling velocities had a direct relation with column diameter and static bed height .The minimum slugging velocity had an

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Mar 20 2020
Journal Name
Fibers
Influence of Cooling Methods on the Behavior of Reactive Powder Concrete Exposed to Fire Flame Effect
...Show More Authors

The construction of highly safe and durable buildings that can bear accident damage risks including fire, earthquake, impact, and more, can be considered to be the most important goal in civil engineering technology. An experimental investigation was prepared to study the influence of adding various percentages 0%, 1.0%, and 1.5% of micro steel fiber volume fraction (Vf) to reactive powder concrete (RPC)—whose properties are compressive strength, splitting tensile strength, flexural strength, and absorbed energy—after the exposure to fire flame of various burning temperatures 300, 400, and 500 °C using gradual-, foam-, and sudden-cooling methods. The outcomes of this research proved that the maximum reduction in mechanical prop

... Show More
View Publication
Scopus (6)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Thu May 23 2019
Journal Name
The International Journal Of Artificial Organs
Real-time classification of shoulder girdle motions for multifunctional prosthetic hand control: A preliminary study
...Show More Authors

In every country in the world, there are a number of amputees who have been exposed to some accidents that led to the loss of their upper limbs. The aim of this study is to suggest a system for real-time classification of five classes of shoulder girdle motions for high-level upper limb amputees using a pattern recognition system. In the suggested system, the wavelet transform was utilized for feature extraction, and the extreme learning machine was used as a classifier. The system was tested on four intact-limbed subjects and one amputee, with eight channels involving five electromyography channels and three-axis accelerometer sensor. The study shows that the suggested pattern recognition system has the ability to classify the sho

... Show More
View Publication
Scopus (5)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Tue Jan 01 2013
Journal Name
Ibn Al-haitham Journal For Pure And Applied Science
Classification and Construction of (k,3)-Arcs on Projective Plane Over Galois Field GF(7)
...Show More Authors

The purpose of this work is to study the classification and construction of (k,3)-arcs in the projective plane PG(2,7). We found that there are two (5,3)-arcs, four (6,3)-arcs, six (7,3)arcs, six (8,3)-arcs, seven (9,3)-arcs, six (10,3)-arcs and six (11,3)-arcs. All of these arcs are incomplete. The number of distinct (12,3)-arcs are six, two of them are complete. There are four distinct (13,3)-arcs, two of them are complete and one (14,3)-arc which is incomplete. There exists one complete (15,3)-arc.

Publication Date
Sat Jan 01 2022
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
Increasing validation accuracy of a face mask detection by new deep learning model-based classification
...Show More Authors

During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve

... Show More
View Publication
Scopus (4)
Crossref (4)
Scopus Crossref
Publication Date
Mon Oct 03 2022
Journal Name
International Journal Of Nonlinear Analysis And Applications
Use of learning methods for gender and age classification based on front shot face images
...Show More Authors

Publication Date
Sat Jan 01 2022
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science (ijeecs)
Increasing validation accuracy of a face mask detection by new deep learning model-based classification
...Show More Authors

During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve

... Show More
Crossref (4)
Crossref
Publication Date
Fri Jan 31 2025
Journal Name
Aip Conference Proceedings
Classification of oral cavity cancer using linear discriminant analysis (LDA) and principal component analysis (PCA)
...Show More Authors

View Publication
Crossref (1)
Scopus Crossref
Publication Date
Sat Apr 30 2022
Journal Name
Revue D'intelligence Artificielle
Performance Evaluation of SDN DDoS Attack Detection and Mitigation Based Random Forest and K-Nearest Neighbors Machine Learning Algorithms
...Show More Authors

Software-defined networks (SDN) have a centralized control architecture that makes them a tempting target for cyber attackers. One of the major threats is distributed denial of service (DDoS) attacks. It aims to exhaust network resources to make its services unavailable to legitimate users. DDoS attack detection based on machine learning algorithms is considered one of the most used techniques in SDN security. In this paper, four machine learning techniques (Random Forest, K-nearest neighbors, Naive Bayes, and Logistic Regression) have been tested to detect DDoS attacks. Also, a mitigation technique has been used to eliminate the attack effect on SDN. RF and KNN were selected because of their high accuracy results. Three types of ne

... Show More
View Publication
Scopus (17)
Crossref (6)
Scopus Crossref