Preferred Language
Articles
/
Uhe7l5MBVTCNdQwCTdbp
An Artificial Neural Network Prediction Model of GFRP Residual Tensile Strength
...Show More Authors

This study uses an Artificial Neural Network (ANN) to examine the constitutive relationships of the Glass Fiber Reinforced Polymer (GFRP) residual tensile strength at elevated temperatures. The objective is to develop an effective model and establish fire performance criteria for concrete structures in fire scenarios. Multilayer networks that employ reactive error distribution approaches can determine the residual tensile strength of GFRP using six input parameters, in contrast to previous mathematical models that utilized one or two inputs while disregarding the others. Multilayered networks employing reactive error distribution technology assign weights to each variable influencing the residual tensile strength of GFRP. Temperature exerted the most significant influence at 100%, while sample dimensions had a minimal impact at 17.9%. In addition, the mathematical model closest to the proposed was the Bazli model, because the latter depends on two variables (thickness and temperature). The ANN accurately predicted the residual tensile strength of GFRP at elevated temperatures, achieving a correlation coefficient of 97.3% and a determination coefficient of 94.3%.

Scopus Crossref
View Publication
Publication Date
Wed Apr 01 2015
Journal Name
Mathematical Methods In The Applied Sciences
An inverse problem of finding the time-dependent diffusion coefficient from an integral condition
...Show More Authors

View Publication
Scopus (33)
Crossref (23)
Scopus Clarivate Crossref
Publication Date
Thu Jun 01 2017
Journal Name
Journal Of Huazhong University Of Science And Technology [medical Sciences]
New mini dental implant attachments versus O-ring attachment after cyclic aging: Analysis of retention strength and gap space
...Show More Authors

View Publication
Crossref (2)
Crossref
Publication Date
Fri Jan 23 2026
Journal Name
Journal Of Baghdad College Of Dentistry
The effect of incorporating carbon nanotubes on impact, transverse strength, hardness, and roughness to high impact denture base material
...Show More Authors

Background: One of the most common complications of dentures is its ability to fracture, so the aim of this study was to reinforce the high impact denture base with carbon nanotubes in different concentrations to improve the mechanical and physical properties of the denture base. Materials and methods: Three concentrations of carbon nanotubes was used 0.5%, 1%, 1.5% in a pilot study to see the best values regarding transverse strength, impact, hardness and roughness test, 1 wt% was the best concentration, so new samples for control group and 1wt% carbon nanotubes and the previous tests were of course repeated. Results: There was a significant increase in impact strength and transverse strength when we add carbon nanotubes in 1wt%, compared

... Show More
View Publication Preview PDF
Publication Date
Fri Jan 23 2026
Journal Name
Journal Of Physical Education
Strength Variable Analysis With the Height of Body Mass Center In High Spike Position 4 In Volleyball League Players
...Show More Authors

View Publication
Publication Date
Sun Nov 01 2015
Journal Name
Journal Of Engineering
A Spike Neural Controller for Traffic Load Parameter with Priority-Based Rate in Wireless Multimedia Sensor Networks
...Show More Authors

Wireless Multimedia Sensor Networks (WMSNs) are a type of sensor network that contains sensor nodes equipped with cameras, microphones; therefore the WMSNS are able to   produce multimedia data such as video and audio streams, still images, and scalar data from the surrounding environment. Most multimedia applications typically produce huge volumes of data, this leads to congestion. To address this challenge, This paper proposes Modify Spike Neural Network control for Traffic Load Parameter with Exponential Weight of Priority Based Rate Control algorithm (MSNTLP with EWBPRC). The Modify Spike Neural Network controller (MSNC) can calculate the appropriate traffi

... Show More
View Publication Preview PDF
Publication Date
Tue Sep 04 2018
Journal Name
Al-khwarizmi Engineering Journal
Modified Elman Neural-PID Controller Design for DC-DC Buck Converter System Based on Dolphin Echolocation Optimization
...Show More Authors

This paper describes a new proposed structure of the Proportional Integral Derivative (PID) controller based on modified Elman neural network for the DC-DC buck converter system which is used in battery operation of the portable devices. The Dolphin Echolocation Optimization (DEO) algorithm is considered as a perfect on-line tuning technique therefore, it was used for tuning and obtaining the parameters of the modified Elman neural-PID controller to avoid the local minimum problem during learning the proposed controller. Simulation results show that the best weight parameters of the proposed controller, which are taken from the DEO, lead to find the best action and unsaturated state that will stabilize the Buck converter system performan

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Ieee Access
Transfer Learning and Hybrid Deep Convolutional Neural Networks Models for Autism Spectrum Disorder Classification From EEG Signals
...Show More Authors

View Publication
Scopus (24)
Crossref (32)
Scopus Clarivate Crossref
Publication Date
Mon Jul 01 2024
Journal Name
Journal Of Food Process Engineering
Artificial intelligence‐based modeling of novel non‐thermal milk pasteurization to achieve desirable color and predict quality parameters during storage
...Show More Authors
Abstract<sec><label></label><p>This study proposed using color components as artificial intelligence (AI) input to predict milk moisture and fat contents. In this sense, an adaptive neuro‐fuzzy inference system (ANFIS) was applied to milk processed by moderate electrical field‐based non‐thermal (NP) and conventional pasteurization (CP). The differences between predicted and experimental data were not significant (<italic>p</italic> > 0.05) for lightness (<italic>L</italic>*), redness‐greenness (<italic>a</italic>*), yellowness‐blueness (<italic>b</italic>*), total color differences (∆<italic>E</italic>), hue angle (<italic>h</italic></p></sec> ... Show More
View Publication
Scopus (5)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Tue May 23 2023
Journal Name
Journal Of Engineering
Combined effect of fineness modulus and grading zones of fine aggregate on fresh properties and compressive strength of self compacted concrete
...Show More Authors

Self-compacted concrete (SCC) considered as a revolution progress in concrete technology due to its ability for flowing through forms, fusion with reinforcement, compact itself by its weight without using vibrators and economic advantages. This research aims to assess the fresh properties of SCC and study their effect on its compressive strength using different grading zones and different fineness modulus (F.M) of fine aggregate. The fineness modulus used in this study was (2.73, 2.82,2.9& 3.12) for different zones of grading (zone I, zone II& marginal zone(between zone I&II)) according to Iraqi standards (I.Q.S No.45/1984).Twelve mixes were prepared, each mix were tested in fresh state with slump, V-Funnel and L-Box tests, t

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Sep 28 2024
Journal Name
Journal Of International Dental And Medical Research
Effect of Air–Particle Abrasion of Dentin Surface on Shear Bond Strength of Lithium Disilicate to Dentin Using Three Different Cements
...Show More Authors

This study aims to evaluate the influence of the air abrasion of dentin on the shear bond strength of lithium disilicate using three different types of luting cements. Sixty cylindrical specimens were milled from lithium disilicate CAD/CAM blocks (IPSe.max CAD). Sixty sound human maxillary premolar teeth were decoronated to the level of peripheral dentin, then randomly divided into three groups according to the type of luting cement used for the cementation of the lithium disilicate specimens (n = 20); Group A: Glass ionomer cement (Riva Self- Cure); Group B: Adhesive resin cement (Rely X Ultimate); Group C: Self-adhesive resin cement (Rely X U200). Each group was then further subdivided into two subgroups (n=10); Subgroups AI, BI, and CI,

... Show More
Preview PDF
Scopus