This study uses an Artificial Neural Network (ANN) to examine the constitutive relationships of the Glass Fiber Reinforced Polymer (GFRP) residual tensile strength at elevated temperatures. The objective is to develop an effective model and establish fire performance criteria for concrete structures in fire scenarios. Multilayer networks that employ reactive error distribution approaches can determine the residual tensile strength of GFRP using six input parameters, in contrast to previous mathematical models that utilized one or two inputs while disregarding the others. Multilayered networks employing reactive error distribution technology assign weights to each variable influencing the residual tensile strength of GFRP. Temperature exerted the most significant influence at 100%, while sample dimensions had a minimal impact at 17.9%. In addition, the mathematical model closest to the proposed was the Bazli model, because the latter depends on two variables (thickness and temperature). The ANN accurately predicted the residual tensile strength of GFRP at elevated temperatures, achieving a correlation coefficient of 97.3% and a determination coefficient of 94.3%.
The Dagum Regression Model, introduced to address limitations in traditional econometric models, provides enhanced flexibility for analyzing data characterized by heavy tails and asymmetry, which is common in income and wealth distributions. This paper develops and applies the Dagum model, demonstrating its advantages over other distributions such as the Log-Normal and Gamma distributions. The model's parameters are estimated using Maximum Likelihood Estimation (MLE) and the Method of Moments (MoM). A simulation study evaluates both methods' performance across various sample sizes, showing that MoM tends to offer more robust and precise estimates, particularly in small samples. These findings provide valuable insights into the ana
... Show MoreIn this paper, the error distribution function is estimated for the single index model by the empirical distribution function and the kernel distribution function. Refined minimum average variance estimation (RMAVE) method is used for estimating single index model. We use simulation experiments to compare the two estimation methods for error distribution function with different sample sizes, the results show that the kernel distribution function is better than the empirical distribution function.
This work addressed the assignment problem (AP) based on fuzzy costs, where the objective, in this study, is to minimize the cost. A triangular, or trapezoidal, fuzzy numbers were assigned for each fuzzy cost. In addition, the assignment models were applied on linguistic variables which were initially converted to quantitative fuzzy data by using the Yager’sorankingi method. The paper results have showed that the quantitative date have a considerable effect when considered in fuzzy-mathematic models.
The relative strength index (RSI) is one of the best known technical analysis indicators; it provides the speculators by prior signals about the future stock’s prices, and because the speculations in shares of companies which listed in the Iraq Stock Exchange have a high degree of risk, like risk of shares prices felling, so the speculators became committed to use some methods to reduce these risks, and one of these methods is the technical analysis by using the relative strength index (RSI) which enable the speculators of choosing the right time for buy and sell the stocks and the right time to enter or leave the market by using the historical rice data. And from here the problem of the research formulated as “Is the using of
... Show MoreBackground: The bond strength of root canal sealers to dentin was important for maintaining the integrity of the seal in root canal filling in both static and dynamic situations. In a static situation, it should eliminate any space that allowed the percolation of fluids between the filling and the wall while in a dynamic situation; it was needed to resist dislodgement of the filling during subsequent manipulation. Materials and Methods: Forty mandibular premolars were selected for this study. All canals were instrumented using ProTaper rotary instruments. Instrumentation was done with copious irrigation of 5.25% sodium hypochlorite. Roots were randomly divided into four groups according to the type of cleaning and method of root canal irrig
... Show More