The influx of data in bioinformatics is primarily in the form of DNA, RNA, and protein sequences. This condition places a significant burden on scientists and computers. Some genomics studies depend on clustering techniques to group similarly expressed genes into one cluster. Clustering is a type of unsupervised learning that can be used to divide unknown cluster data into clusters. The k-means and fuzzy c-means (FCM) algorithms are examples of algorithms that can be used for clustering. Consequently, clustering is a common approach that divides an input space into several homogeneous zones; it can be achieved using a variety of algorithms. This study used three models to cluster a brain tumor dataset. The first model uses FCM, which is used to cluster genes. FCM allows an object to belong to two or more clusters with a membership grade between zero and one and the sum of belonging to all clusters of each gene is equal to one. This paradigm is useful when dealing with microarray data. The total time required to implement the first model is 22.2589 s. The second model combines FCM and particle swarm optimization (PSO) to obtain better results. The hybrid algorithm, i.e., FCM–PSO, uses the DB index as objective function. The experimental results show that the proposed hybrid FCM–PSO method is effective. The total time of implementation of this model is 89.6087 s. The third model combines FCM with a genetic algorithm (GA) to obtain better results. This hybrid algorithm also uses the DB index as objective function. The experimental results show that the proposed hybrid FCM–GA method is effective. Its total time of implementation is 50.8021 s. In addition, this study uses cluster validity indexes to determine the best partitioning for the underlying data. Internal validity indexes include the Jaccard, Davies Bouldin, Dunn, Xie–Beni, and silhouette. Meanwhile, external validity indexes include Minkowski, adjusted Rand, and percentage of correctly categorized pairings. Experiments conducted on brain tumor gene expression data demonstrate that the techniques used in this study outperform traditional models in terms of stability and biological significance.
This study focuses on the biodegradation of oxymatrine insecticide by some soil fungi isolated from four agriculture stations. The results showed that the highest degradation rate 94.66% was recorded by Ulocladium sp. at 10 days and A. niger recorded the lowest degradation rate 45.86%, while at 20 days Ulocladium sp. also showed the highest degradation rate 94.98% and the lowest degradation rate reached to 82.49% with A.niger. The mix (Exerohilum sp.+Ulocladium sp.) recorded the highest degradation rate of oxymatrine insecticide 90.22%, 88.51%, 85.34% at 4, 8 and 12 ppm.The use of mixed isolates enhanced the biodegradation process. There is no study of oxymatrine biodegradation
... Show MoreIn this study, a traumatic spinal cord injury (TSCI) classification system is proposed using a convolutional neural network (CNN) technique with automatically learned features from electromyography (EMG) signals for a non-human primate (NHP) model. A comparison between the proposed classification system and a classical classification method (k-nearest neighbors, kNN) is also presented. Developing such an NHP model with a suitable assessment tool (i.e., classifier) is a crucial step in detecting the effect of TSCI using EMG, which is expected to be essential in the evaluation of the efficacy of new TSCI treatments. Intramuscular EMG data were collected from an agonist/antagonist tail muscle pair for the pre- and post-spinal cord lesi
... Show MoreRe-use of the byproduct wastes resulting from different municipal and industrial activities in the reclamation of contaminated water is real application for green projects and sustainability concepts. In this direction, the synthesis of composite sorbent from the mixing of waterworks and sewage sludge coated with new nanoparticles named “siderite” (WSSS) is the novelty of this study. These particles can be precipitated from the iron(II) nitrate using waterworks sludge as alkaline agent and source of carbonate. Characterization tests using X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) mapping revealed that the coating process was c