Researcher Image
بسعاد علي حسين عبيد - Basad Al-Sarray
PhD - assistant professor
College of Science , Department of Computer
[email protected]
Summary

Doctoral Thesis Title Convex optimization methods for estimation and model selection in time series, 06-06- 2016 LMB, Franche Comté university, Besançon-France Master Thesis Title Compression among forecasting methods for Markov and mixed modelBaghdad university, collage of science, math department, Iraq, Baghdad

Assistant professor, University of Baghdad, College of Science, Computer Science Department, Baghdad, Iraq, 2018...

Lecturer, University of Baghdad, College of Science, Computer Science Department, Baghdad, Iraq. 2008-2011

Assistant Lecturer, University of Baghdad, College of Science, Computer Science Department, Baghdad, Iraq 2003-2008 .

Research Interests

Time series analysis, Convex optimization, Big data, Signal processing

Academic Area

Currently, I’m working on some projects that deal with

Project.1 Improving Soft computing algorithms: Particle Swarm Optimization, Natural Evolution Strategy...

Project.2 Computational Bioinformatic

Project.3 Deep learning for objects detection

Project.4 Zero-Shot learning for large scale image classification

Project.5 Community detection in social big data

Project.6 Convex optimization for Big data

Teaching

Numerical Analysis( with MATLAB ), 2003-2011 Advanced Mathematics, 2003-2011

Calculus(I,II)-2016-2017,2017...

Elementary statistics, First year - 2016-2017,

Numerical optimization higher diploma, College of Science, CS-Department-2017-2018 , 2022-2023

Computational statistics Master, College of Science, CS-Department 2019-2020, 2021-2022 { Big ta analysis Master, College of Scienc, CS-department 2020-2021

Supervision

Density based spatial clustering for noisy gene expression data, master degree 2020-2021.

Fuzzy based clustering for gene expression data, master degree , 2020-2021.

Deep learning for predicting gene expression level from genomics sequence, master degree, in-2019-2020

Clustering in gene expression data, high diploma dissertation, 2017.

Bi-clustering techniques for gene expression for breast cancer data, high diploma dissertation, 2018.

Zero shot learning for large scale image classification, high diploma dissertation, 2018

Deep learning for large scale image classification, high diploma dissertation, 2019

Techniques via BFGS-Evolution Strategy for optimizing large scale functions, high diploma dissertation, 2019

Big Social network analysis Community detection for complex network,2018-2019

Predicting change detection in dynamic networks via State Space Time Series Model, submitted as a project for master degree -2019-2021

Publication Date
Mon Jul 16 2018
Journal Name
Mathematics
Decomposition of Dynamical Signals into Jumps, Oscillatory Patterns, and Possible Outliers
...Show More Authors

In this note, we present a component-wise algorithm combining several recent ideas from signal processing for simultaneous piecewise constants trend, seasonality, outliers, and noise decomposition of dynamical time series. Our approach is entirely based on convex optimisation, and our decomposition is guaranteed to be a global optimiser. We demonstrate the efficiency of the approach via simulations results and real data analysis.

View Publication
Scopus (3)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Wed Nov 30 2022
Root Cause Analysis And Improvement In Windows System Based On Windows Performance Toolkit WPT
...Show More Authors

       Performance issues could be appearing from anywhere in a computer system, finding the root cause of those issues is a troublesome issue due to the complexity of the modern systems and applications. Microsoft builds multiple mechanisms to make their engineers understand what is happening inside All Windows versions including Windows 10 Home and the behavior of any application working on it whether Microsoft services or even third-party applications, one of those mechanisms is the Event Tracing for Windows (ETW) which is the core of logging and tracing in Windows operating system to trace the internal events of the system and its applications. This study goes deep into internal process activities to investigat

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Wed Oct 28 2020
Community Detection under Stochastic Block Model Likelihood Optimization via Tabu Search –Fuzzy C-Mean Method for Social Network Data
...Show More Authors

     Structure of network, which is known as community detection in networks, has received a great attention in diverse topics, including social sciences, biological studies, politics, etc. There are a large number of studies and practical approaches that were designed to solve the problem of finding the structure of the network. The definition of complex network model based on clustering is a non-deterministic polynomial-time hardness (NP-hard) problem. There are no ideal techniques to define the clustering. Here, we present a statistical approach based on using the likelihood function of a Stochastic Block Model (SBM). The objective is to define the general model and select the best model with high quality. Therefor

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Mon Aug 26 2019
Finding Best Clustering For Big Networks with Minimum Objective Function by Using Probabilistic Tabu Search
...Show More Authors

     Fuzzy C-means (FCM) is a clustering method used for collecting similar data elements within the group according to specific measurements. Tabu is a heuristic algorithm. In this paper, Probabilistic Tabu Search for FCM implemented to find a global clustering based on the minimum value of the Fuzzy objective function. The experiments designed for different networks, and cluster’s number the results show the best performance based on the comparison that is done between the values of the objective function in the case of using standard FCM and Tabu-FCM, for the average of ten runs.

View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Sun Jan 01 2023
Journal Name
2nd International Conference On Mathematical Techniques And Applications: Icmta2021
Review of clustering for gene expression data
...Show More Authors

View Publication
Crossref (2)
Crossref
Publication Date
Tue Jun 01 2021
Journal Name
Al-nahrain Journal Of Science
Medical Image Denoising Via Matrix Norm Minimization Problems
...Show More Authors

This paper presents the matrix completion problem for image denoising. Three problems based on matrix norm are performing: Spectral norm minimization problem (SNP), Nuclear norm minimization problem (NNP), and Weighted nuclear norm minimization problem (WNNP). In general, images representing by a matrix this matrix contains the information of the image, some information is irrelevant or unfavorable, so to overcome this unwanted information in the image matrix, information completion is used to comperes the matrix and remove this unwanted information. The unwanted information is handled by defining {0,1}-operator under some threshold. Applying this operator on a given ma

... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Mon Feb 21 2022
Journal Name
Iraqi Journal For Computer Science And Mathematics
Fuzzy C means Based Evaluation Algorithms For Cancer Gene Expression Data Clustering
...Show More Authors

The influx of data in bioinformatics is primarily in the form of DNA, RNA, and protein sequences. This condition places a significant burden on scientists and computers. Some genomics studies depend on clustering techniques to group similarly expressed genes into one cluster. Clustering is a type of unsupervised learning that can be used to divide unknown cluster data into clusters. The k-means and fuzzy c-means (FCM) algorithms are examples of algorithms that can be used for clustering. Consequently, clustering is a common approach that divides an input space into several homogeneous zones; it can be achieved using a variety of algorithms. This study used three models to cluster a brain tumor dataset. The first model uses FCM, whic

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Sun Jul 31 2022
Deep Learning and Machine Learning via a Genetic Algorithm to Classify Breast Cancer DNA Data
...Show More Authors

       This paper uses Artificial Intelligence (AI) based algorithm analysis to classify breast cancer Deoxyribonucleic (DNA). Main idea is to focus on application of machine and deep learning techniques. Furthermore, a genetic algorithm is used to diagnose gene expression to reduce the number of misclassified cancers. After patients' genetic data are entered, processing operations that require filling the missing values using different techniques are used. The best data for the classification process are chosen by combining each technique using the genetic algorithm and comparing them  in terms of accuracy.

View Publication Preview PDF
Scopus (20)
Crossref (4)
Scopus Crossref
Publication Date
Tue Apr 26 2011
Journal Name
Evolutionary Algorithms
Variants of Hybrid Genetic Algorithms for Optimizing Likelihood ARMA Model Function and Many of Problems
...Show More Authors

View Publication
Crossref (1)
Crossref
Publication Date
Sun Dec 01 2019
Journal Name
Al-nahrain Journal Of Science
Enhancing Sparse Adjacency Matrix for Community Detection in Large Networks
...Show More Authors

View Publication
Crossref (1)
Crossref
Publication Date
Wed Sep 05 2007
Journal Name
Neural Network World
A canonical generic algorithm for likelihood estimator of first order moving average model parameter
...Show More Authors

The increasing availability of computing power in the past two decades has been use to develop new techniques for optimizing solution of estimation problem. Today's computational capacity and the widespread availability of computers have enabled development of new generation of intelligent computing techniques, such as our interest algorithm, this paper presents one of new class of stochastic search algorithm (known as Canonical Genetic' Algorithm ‘CGA’) for optimizing the maximum likelihood function strategy is composed of three main steps: recombination, mutation, and selection. The experimental design is based on simulating the CGA with different values of are compared with those of moment method. Based on MSE value obtained from bot

... Show More
Scopus (3)
Scopus
Publication Date
Wed Oct 26 2022
Journal Name
Iraqi Journal Of Science
Gene Expression Analysis via Spatial Clustering and Evaluation Indexing
...Show More Authors

The density-based spatial clustering for applications with noise (DBSCAN) is one of the most popular applications of clustering in data mining, and it is used to identify useful patterns and interesting distributions in the underlying data. Aggregation methods for classifying nonlinear aggregated data. In particular, DNA methylations, gene expression. That show the differentially skewed by distance sites and grouped nonlinearly by cancer daisies and the change Situations for gene excretion on it. Under these conditions, DBSCAN is expected to have a desirable clustering feature i that can be used to show the results of the changes. This research reviews the DBSCAN and compares its performance with other algorithms, such as the tradit

... Show More
View Publication
Scopus (3)
Scopus Crossref
Publication Date
Thu Feb 16 2017
Journal Name
Signal, Image And Video Processing
Enhancing Prony’s method by nuclear norm penalization and extension to missing data
...Show More Authors

View Publication
Scopus (5)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Fri Aug 01 2008
Journal Name
2008 First International Conference On The Applications Of Digital Information And Web Technologies (icadiwt)
Hybrid canonical genetic algorithm and steepest descent algorithm for optimizing likelihood estimators of ARMA (1, 1) model
...Show More Authors

This paper presents a hybrid genetic algorithm (hGA) for optimizing the maximum likelihood function ln(L(phi(1),theta(1)))of the mixed model ARMA(1,1). The presented hybrid genetic algorithm (hGA) couples two processes: the canonical genetic algorithm (cGA) composed of three main steps: selection, local recombination and mutation, with the local search algorithm represent by steepest descent algorithm (sDA) which is defined by three basic parameters: frequency, probability, and number of local search iterations. The experimental design is based on simulating the cGA, hGA, and sDA algorithms with different values of model parameters, and sample size(n). The study contains comparison among these algorithms depending on MSE value. One can conc

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Wed Oct 28 2015
Journal Name
Journal Of Mathematics And System Science
Simulating Particle Swarm Optimization Algorithm to Estimate Likelihood Function of ARMA(1, 1) Model
...Show More Authors

Crossref
No Events Found