The influx of data in bioinformatics is primarily in the form of DNA, RNA, and protein sequences. This condition places a significant burden on scientists and computers. Some genomics studies depend on clustering techniques to group similarly expressed genes into one cluster. Clustering is a type of unsupervised learning that can be used to divide unknown cluster data into clusters. The k-means and fuzzy c-means (FCM) algorithms are examples of algorithms that can be used for clustering. Consequently, clustering is a common approach that divides an input space into several homogeneous zones; it can be achieved using a variety of algorithms. This study used three models to cluster a brain tumor dataset. The first model uses FCM, which is used to cluster genes. FCM allows an object to belong to two or more clusters with a membership grade between zero and one and the sum of belonging to all clusters of each gene is equal to one. This paradigm is useful when dealing with microarray data. The total time required to implement the first model is 22.2589 s. The second model combines FCM and particle swarm optimization (PSO) to obtain better results. The hybrid algorithm, i.e., FCM–PSO, uses the DB index as objective function. The experimental results show that the proposed hybrid FCM–PSO method is effective. The total time of implementation of this model is 89.6087 s. The third model combines FCM with a genetic algorithm (GA) to obtain better results. This hybrid algorithm also uses the DB index as objective function. The experimental results show that the proposed hybrid FCM–GA method is effective. Its total time of implementation is 50.8021 s. In addition, this study uses cluster validity indexes to determine the best partitioning for the underlying data. Internal validity indexes include the Jaccard, Davies Bouldin, Dunn, Xie–Beni, and silhouette. Meanwhile, external validity indexes include Minkowski, adjusted Rand, and percentage of correctly categorized pairings. Experiments conducted on brain tumor gene expression data demonstrate that the techniques used in this study outperform traditional models in terms of stability and biological significance.
HBV and HCV are the major causes of chronic liver diseases throughout the world, and constitute a major global health risk. There is accumulated evidence that the imbalance of proinflammatory and anti-inflammatory cytokine production may play an important role in the pathogenesis of viral hepatic infections and may influence the clinical outcome and disease progression. This study was undertaken to analyze the circulating levels of Tumor Necrotic Factor (TNF-α) and Th2 cytokine IL-10 in patients infected with Hepatitis B and C virus. The study population consisted of 30 patients with chronic HBV, in addition to other 30 patients with chronic HCV infection were recruited on their first examination at the Al-Kindy General Hospital in Baghdad
... Show MoreHepatitis B and C is a serious global public health problem that causes chronic liver disease and accelerates high risk of death from cirrhosis of the liver and liver cancer.
To determine the knowledge and attitude of nonmedical students at Baghdad University toward HBV and HCV infections and to find out the relationship between demographic characteristics.
The study w
ABSTRACT
The study was conducted at the ruminant research station of the general commission for agricultural research/Ministry of Agriculture, as well as the laboratory of genetic resources of the department of livestock/Ministry of Agriculture and the laboratory of the college of agriculture engineering science, with the aim of determine the genotypic of the expression region (intron 2 and part of exon 3) of the LHX3 gene And its relationship to the fertility rate in local and Shami goats. For this purpose, the RFLP technique was used, and the percentages of genotypes for the LHX3 gene in the local goat sample were 29.17, 50.00, 20.83 for the TT, AT, and AA genotypes, respectively, while in the Shami goa
... Show MoreOur goal in the present paper is to recall the concept of general fuzzy normed space and its basic properties in order to define the adjoint operator of a general fuzzy bounded operator from a general fuzzy normed space V into another general fuzzy normed space U. After that basic properties of the adjoint operator were proved then the definition of fuzzy reflexive general fuzzy normed space was introduced in order to prove that every finite dimensional general fuzzy normed space is fuzzy reflexive.
In some cases, researchers need to know the causal effect of the treatment in order to know the extent of the effect of the treatment on the sample in order to continue to give the treatment or stop the treatment because it is of no use. The local weighted least squares method was used to estimate the parameters of the fuzzy regression discontinuous model, and the local polynomial method was used to estimate the bandwidth. Data were generated with sample sizes (75,100,125,150 ) in repetition 1000. An experiment was conducted at the Innovation Institute for remedial lessons in 2021 for 72 students participating in the institute and data collection. Those who used the treatment had an increase in their score after
... Show MoreWe present the notion of bipolar fuzzy k-ideals with thresholds (