The influx of data in bioinformatics is primarily in the form of DNA, RNA, and protein sequences. This condition places a significant burden on scientists and computers. Some genomics studies depend on clustering techniques to group similarly expressed genes into one cluster. Clustering is a type of unsupervised learning that can be used to divide unknown cluster data into clusters. The k-means and fuzzy c-means (FCM) algorithms are examples of algorithms that can be used for clustering. Consequently, clustering is a common approach that divides an input space into several homogeneous zones; it can be achieved using a variety of algorithms. This study used three models to cluster a brain tumor dataset. The first model uses FCM, which is used to cluster genes. FCM allows an object to belong to two or more clusters with a membership grade between zero and one and the sum of belonging to all clusters of each gene is equal to one. This paradigm is useful when dealing with microarray data. The total time required to implement the first model is 22.2589 s. The second model combines FCM and particle swarm optimization (PSO) to obtain better results. The hybrid algorithm, i.e., FCM–PSO, uses the DB index as objective function. The experimental results show that the proposed hybrid FCM–PSO method is effective. The total time of implementation of this model is 89.6087 s. The third model combines FCM with a genetic algorithm (GA) to obtain better results. This hybrid algorithm also uses the DB index as objective function. The experimental results show that the proposed hybrid FCM–GA method is effective. Its total time of implementation is 50.8021 s. In addition, this study uses cluster validity indexes to determine the best partitioning for the underlying data. Internal validity indexes include the Jaccard, Davies Bouldin, Dunn, Xie–Beni, and silhouette. Meanwhile, external validity indexes include Minkowski, adjusted Rand, and percentage of correctly categorized pairings. Experiments conducted on brain tumor gene expression data demonstrate that the techniques used in this study outperform traditional models in terms of stability and biological significance.
In this paper, Min-Max composition fuzzy relation equation are studied. This study is a generalization of the works of Ohsato and Sekigushi. The conditions for the existence of solutions are studied, then the resolution of equations is discussed.
The notion of interval value fuzzy k-ideal of KU-semigroup was studied as a generalization of afuzzy k-ideal of KU-semigroup. Some results of this idea under homomorphism are discussed. Also, we presented some properties about the image (pre-image) for interval~ valued fuzzy~k-ideals of a KU-semigroup. Finally, the~ product of~ interval valued fuzzyk-ideals is established.
Simulation of the Linguistic Fuzzy Trust Model (LFTM) over oscillating Wireless Sensor Networks (WSNs) where the goodness of the servers belonging to them could change along the time is presented in this paper, and the comparison between the outcomes achieved with LFTM model over oscillating WSNs with the outcomes obtained by applying the model over static WSNs where the servers maintaining always the same goodness, in terms of the selection percentage of trustworthy servers (the accuracy of the model) and the average path length are also presented here. Also in this paper the comparison between the LFTM and the Bio-inspired Trust and Reputation Model for Wireless Sensor Network
... Show MoreThe last decade of this 20th century provides a wide spread of applications of one of the computer techniques, which is called Fuzzy Logic. This technique depends mainly on the fuzzy set theory, which is considered as a general domain with respect to the conventional set theory. This paper presents in initiative the fuzzy sets theory and fuzzy logic as a complete mathematics system. Here it was explained the concept of fuzzy set and defined the operations of fuzzy logic. It contains eleven operations beside the other operations which related to fuzzy algebra. Such search is considered as an enhancement for supporting the others waiting search activities in this field.
In thisˑ paperˑ, we apply the notion ofˑ intuitionisticˑ fuzzyˑ n-fold KU-ideal of KU-algebra. Some types of ideals such as intuitionistic fuzzy KU-ideal, intuitionisticˑ fuzzy closed idealˑ and intuitionistic fuzzy n-fold KU-ideal are studied. Also, the relations between intuitionistic fuzzy n-fold KU-ideal and intuitionistic fuzzy KU-ideal are discussed. Furthermore, aˑ fewˑ results of intuitionisticˑ fuzzyˑ n-ˑfold KU-ideals of a KU-algebra underˑ homomorphismˑ are discussed.
Many economists believe that the development and promotion of small and medium-sized enterprises is one of the most important sources of economic and social development in countries in general and in developing countries in particular. This is considered to be an essential starting point for increasing production capacity and contributing to tackling poverty and unemployment. In view of the importance of these projects, most developing countries have concentrated their efforts on them. They have encouraged the establishment of small and medium industries, especially after they have proved their ability and efficiency in dealing with the major problems facing different economies.
The banking system plays an important role by finan
... Show MoreThe paper examines key aspects of the use of phraseologi-cal units related to colors in Russian culture and speech. It explores their role in shaping cultural identity, reflecting national characteristics and men-tality. The study analyzes the frequency and contexts of the use of color-related phraseological units in contemporary speech, as well as the influ-ence of media and literature on their popularization. The author highlights the significance of phraseological units in preserving cultural heritage and fostering a deeper understanding of language and culture.
Administrative procedures in various organizations produce numerous crucial records and data. These
records and data are also used in other processes like customer relationship management and accounting
operations.It is incredibly challenging to use and extract valuable and meaningful information from these data
and records because they are frequently enormous and continuously growing in size and complexity.Data
mining is the act of sorting through large data sets to find patterns and relationships that might aid in the data
analysis process of resolving business issues. Using data mining techniques, enterprises can forecast future
trends and make better business decisions.The Apriori algorithm has bee