Preferred Language
Articles
/
QRbUX4cBVTCNdQwCDkiU
Fuzzy C means Based Evaluation Algorithms For Cancer Gene Expression Data Clustering
...Show More Authors

The influx of data in bioinformatics is primarily in the form of DNA, RNA, and protein sequences. This condition places a significant burden on scientists and computers. Some genomics studies depend on clustering techniques to group similarly expressed genes into one cluster. Clustering is a type of unsupervised learning that can be used to divide unknown cluster data into clusters. The k-means and fuzzy c-means (FCM) algorithms are examples of algorithms that can be used for clustering. Consequently, clustering is a common approach that divides an input space into several homogeneous zones; it can be achieved using a variety of algorithms. This study used three models to cluster a brain tumor dataset. The first model uses FCM, which is used to cluster genes. FCM allows an object to belong to two or more clusters with a membership grade between zero and one and the sum of belonging to all clusters of each gene is equal to one. This paradigm is useful when dealing with microarray data. The total time required to implement the first model is 22.2589 s. The second model combines FCM and particle swarm optimization (PSO) to obtain better results. The hybrid algorithm, i.e., FCM–PSO, uses the DB index as objective function. The experimental results show that the proposed hybrid FCM–PSO method is effective. The total time of implementation of this model is 89.6087 s. The third model combines FCM with a genetic algorithm (GA) to obtain better results. This hybrid algorithm also uses the DB index as objective function. The experimental results show that the proposed hybrid FCM–GA method is effective. Its total time of implementation is 50.8021 s. In addition, this study uses cluster validity indexes to determine the best partitioning for the underlying data. Internal validity indexes include the Jaccard, Davies Bouldin, Dunn, Xie–Beni, and silhouette. Meanwhile, external validity indexes include Minkowski, adjusted Rand, and percentage of correctly categorized pairings. Experiments conducted on brain tumor gene expression data demonstrate that the techniques used in this study outperform traditional models in terms of stability and biological significance.

Crossref
View Publication
Publication Date
Sun Jan 01 2023
Journal Name
International Conference Of Computational Methods In Sciences And Engineering Iccmse 2021
On Čech fuzzy soft bi-clouser spaces
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Wed Nov 01 2023
Journal Name
Journal Of Interdisciplinary Mathematics
Interval valued fuzzy ideals of TM-algebra
...Show More Authors

We introduce the notion of interval value fuzzy ideal of TM-algebra as a generalization of a fuzzy ideal of TM-algebra and investigate some basic properties. Interval value fuzzy ideals and T-ideals are defined and several examples are presented. The relation between interval value fuzzy ideal and fuzzy T-ideal is studied. Abstract We introduce the notion of interval value fuzzy ideal of TM-algebra as a generalization of a fuzzy ideal of TM-algebra and investigate some basic properties. Interval value fuzzy ideals and T- ideals are defined and several examples are presented. The relation between interval value fuzzy ideal and fuzzy T-ideal is studied.

Scopus (1)
Scopus Clarivate Crossref
Publication Date
Fri Jun 01 2007
Journal Name
Al-khwarizmi Engineering Journal
Application of Fuzzy Logic in Servo Motor
...Show More Authors

 In this work the design and application of a fuzzy logic controller to DC-servomotor is investigated. The proposed strategy is intended to improve the performance of the original control system by use of a fuzzy logic controller (FLC) as the motor load changes. Computer simulation demonstrates that FLC is effective in position control of a DC-servomotor comparing with conventional one.

View Publication Preview PDF
Publication Date
Mon Dec 30 2019
Journal Name
Journal Of New Theory
Bipolar Fuzzy k -Ideals in KU-Semigroups
...Show More Authors

We have studied some types of ideals in a KU-semigroup by using the concept of a bipolar fuzzy set. Bipolar fuzzy S-ideals and bipolar fuzzy k-ideals are introduced, and some properties are investigated. Also, some relations between a bipolar fuzzy k-ideal and k-ideal are discussed. Moreover, a bipolar fuzzy k-ideal under homomorphism and the product of two bipolar fuzzy k-ideals are studied.

Publication Date
Sun Dec 10 2017
Journal Name
Al-academy
Representations and perceptions of anxiety about the future of artistic expression for students in middle school
...Show More Authors

The tensions and crises and the psychological pressure as well as the rapid changes and great development which is taking place in the present time. And  witnessing community of wars and conflicts that give rise to future concern among members of the community in general and students in particular, as it included the current research a number of chapters, the First chapter contains the research problem, the important goal, then set researcher terminology that has defined and contained in the title of research in the form (concern the future, artistic expression, middle school). The Second chapter included three sections, the first included the nature of adolescence and traits, characteristics and pr

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Sep 18 2020
Journal Name
Hal Open Science
Adaptive Approximation Control of Robotic Manipulators: Centralized and Decentralized Control Algorithms
...Show More Authors

The regressor-based adaptive control is useful for controlling robotic systems with uncertain parameters but with known structure of robot dynamics. Unmodeled dynamics could lead to instability problems unless modification of control law is used. In addition, exact calculation of regressor for robots with more than 6 degrees of freedom is hard to be calculated, and the task could be more complex for robots. Whereas the adaptive approximation control is a powerful tool for controlling robotic systems with unmodeled dynamics. The local (partitioned) approximation-based adaptive control includes representation of the uncertain matrices and vectors in the robot model as finite combinations of basis functions. Update laws for the weighting matri

... Show More
View Publication
Publication Date
Fri Aug 01 2014
Journal Name
International Journal Of Engineering And Innovative Technology (ijeit)
New Predictive Block Matching Searching Algorithms and Hybrid Predictive Search System
...Show More Authors

In this paper, two new simple, fast and efficient block matching algorithms are introduced, both methods begins blocks matching process from the image center block and moves across the blocks toward image boundaries. With each block, its motion vector is initialized using linear prediction that depending on the motion vectors of its neighbor blocks that are already scanned and their motion vectors are assessed. Also, a hybrid mechanism is introduced, it depends on mixing the proposed two predictive mechanisms with Exhaustive Search (ES) mechanism in order to gain matching accuracy near or similar to ES but with Search Time ST less than 80% of the ES. Also, it offers more control capability to reduce the search errors. The experimental tests

... Show More
View Publication Preview PDF
Publication Date
Mon Nov 01 2021
Journal Name
Journal Of Engineering
Performance Evaluation of Pole Placement and Linear Quadratic Regulator Strategies Designed for Mass-Spring-Damper System Based on Simulated Annealing and Ant Colony Optimization
...Show More Authors

This paper investigates the performance evaluation of two state feedback controllers, Pole Placement (PP) and Linear Quadratic Regulator (LQR). The two controllers are designed for a Mass-Spring-Damper (MSD) system found in numerous applications to stabilize the MSD system performance and minimize the position tracking error of the system output. The state space model of the MSD system is first developed. Then, two meta-heuristic optimizations, Simulated Annealing (SA) optimization and Ant Colony (AC) optimization are utilized to optimize feedback gains matrix K of the PP and the weighting matrices Q and R of the LQR to make the MSD system reach stabilization and reduce the oscillation of the response. The Matlab softwar

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Dec 30 2015
Journal Name
Al-kindy College Medical Journal
Cystatin (C) and its correlation to ischemic heart disease
...Show More Authors

Background: Cystatin C is recently considered to be a good predictor of cardiovascular morbidity and mortality in patients with coronary artery disease (CAD)Objectives: Correlation between cystatin and ischemic heart disease.Methods :One hundred forty patients (140) with ischemic heart disease admitted to thin study at Baghdad teaching hospital from the period June. 2011 to Jan. 2012. Those patients was categorized into three groups.Group (A): patients with ischemic heart failure.Group (B): Patients with myocardial infarction.Group (C) patients with unstable angina.All these groups were in comparison to fifty (50) healthy controls. Fasting serum citation (C) were measured in all patients and control in addition to all other routine inves

... Show More
View Publication Preview PDF
Publication Date
Thu Jan 10 2019
Journal Name
Applied Physics A
Characterization and nanocrystalline growth of a-Ge:In/c-GaAs
...Show More Authors

View Publication
Scopus (2)
Crossref (3)
Scopus Clarivate Crossref