The influx of data in bioinformatics is primarily in the form of DNA, RNA, and protein sequences. This condition places a significant burden on scientists and computers. Some genomics studies depend on clustering techniques to group similarly expressed genes into one cluster. Clustering is a type of unsupervised learning that can be used to divide unknown cluster data into clusters. The k-means and fuzzy c-means (FCM) algorithms are examples of algorithms that can be used for clustering. Consequently, clustering is a common approach that divides an input space into several homogeneous zones; it can be achieved using a variety of algorithms. This study used three models to cluster a brain tumor dataset. The first model uses FCM, which is used to cluster genes. FCM allows an object to belong to two or more clusters with a membership grade between zero and one and the sum of belonging to all clusters of each gene is equal to one. This paradigm is useful when dealing with microarray data. The total time required to implement the first model is 22.2589 s. The second model combines FCM and particle swarm optimization (PSO) to obtain better results. The hybrid algorithm, i.e., FCM–PSO, uses the DB index as objective function. The experimental results show that the proposed hybrid FCM–PSO method is effective. The total time of implementation of this model is 89.6087 s. The third model combines FCM with a genetic algorithm (GA) to obtain better results. This hybrid algorithm also uses the DB index as objective function. The experimental results show that the proposed hybrid FCM–GA method is effective. Its total time of implementation is 50.8021 s. In addition, this study uses cluster validity indexes to determine the best partitioning for the underlying data. Internal validity indexes include the Jaccard, Davies Bouldin, Dunn, Xie–Beni, and silhouette. Meanwhile, external validity indexes include Minkowski, adjusted Rand, and percentage of correctly categorized pairings. Experiments conducted on brain tumor gene expression data demonstrate that the techniques used in this study outperform traditional models in terms of stability and biological significance.
Despite extensive investigations, an effective treatment for sepsis remains elusive and a better understanding of the inflammatory response to infection is required to identify potential new targets for therapy. In this study we have used RNAi technology to show, for the first time, that the inducible lysophosphatidylcholine acyltransferase 2 (LPCAT2) plays a key role in macrophage inflammatory gene expression in response to stimulation with bacterial ligands. Using siRNA- or shRNA-mediated knockdown, we demonstrate that, in contrast to the constitutive LPCAT1, LPCAT2 is required for macrophage cytokine gene expression and release in response to TLR4 and TLR2 ligand stimulation but not for TLR-independent stimuli. In addition, cells transfe
... Show MoreLeishmania species are the causative agent of a tropical disease known as leishmaniasis. Previous studies on the old world species Leishmania major, showed that the amastigotes form which resides inside the macrophage of the vertebrate host, utilize host’s sphingolipids for survival and proliferation. In this study, gene expression of serine palmitoyltransferase (SPT) subunit two (MmLCB2) of the mouse macrophage cell line (RAW264.7), which is the first enzyme in the de novo sphingolipid biosynthesis, was detected in both infected and non-infected macrophages. This was detected under condition where available sphingolipid was reduced, with the new world species Leishmania mexicana. Results of qPCR analysis showed that there was no differen
... Show MoreOne hundred twelve urine samples were collected from Baghdad hospitals and examined by different identification techniques. Seventy isolates (62.5%) were diagnosed as Escherichia coli after microscopic and cultural identifications. The result of PCR product electrophoresis on the isolates showed that thirteen isolates (18.57%) have Pap E gene which are uropathogenic E. coli. Antibiotic susceptibility test was done, and four high resistant strains were mixed with aqueous extract of Quercus infectoria plant in 96 well ELISA plate and incubated for different times. After 0, 6, and 12 hr. of incubation, the effect of the plant extract on the bacterial growth was determined by ELISA reader, and the effect on the expression of P
... Show MorePseudomonas aeruginosa is an opportunistic pathogen responsible for serious infections. At least three different exopolysaccharides, alginate, polysaccharide synthesis locus (Psl), and pellicle exopolysaccharide (Pel) make up the biofilm matrix in P. aeruginosa . The effect of temperature on the biofilm formation and gene expression was examined by microtiter plate and real-time quantitative polymerase chain reaction (qRT-PCR). To be able to determine the effect of temperature on biofilm formation and gene expression of P. aeruginosa, 303 clinical and environmental samples were collected. Pseudomonas aeruginosa was isolated from 61 (20.1%) and 48 (15.8%) of the clinical and e
... Show MoreThe aim of this study was to establish the existence and interaction of TMPRSS2 – ERG gene fusion status with clinicopathological features of prostate cancer patients. This research consisted of 123 embedded formalin-fixed tissues obtained from the prostate tumor patients. The above gene fusion is detected through the technique of fluorescent in situ hybridization (FISH) by means of a triple color probe. Seven samples have not been scored due to technical difficulties and 46 patients have fusion (39.6%), while the remaining (70) have not been seen with fusion. Of the 46 fusion-positive, 17 (36%) were caused by ERG-translocation, of the other 29 (63%) were caused by the interstitial segment deletion between the two genes due to the
... Show MoreThe development of information systems in recent years has contributed to various methods of gathering information to evaluate IS performance. The most common approach used to collect information is called the survey system. This method, however, suffers one major drawback. The decision makers consume considerable time to transform data from survey sheets to analytical programs. As such, this paper proposes a method called ‘survey algorithm based on R programming language’ or SABR, for data transformation from the survey sheets inside R environments by treating the arrangement of data as a relational format. R and Relational data format provide excellent opportunity to manage and analyse the accumulated data. Moreover, a survey syste
... Show More