The influx of data in bioinformatics is primarily in the form of DNA, RNA, and protein sequences. This condition places a significant burden on scientists and computers. Some genomics studies depend on clustering techniques to group similarly expressed genes into one cluster. Clustering is a type of unsupervised learning that can be used to divide unknown cluster data into clusters. The k-means and fuzzy c-means (FCM) algorithms are examples of algorithms that can be used for clustering. Consequently, clustering is a common approach that divides an input space into several homogeneous zones; it can be achieved using a variety of algorithms. This study used three models to cluster a brain tumor dataset. The first model uses FCM, which is used to cluster genes. FCM allows an object to belong to two or more clusters with a membership grade between zero and one and the sum of belonging to all clusters of each gene is equal to one. This paradigm is useful when dealing with microarray data. The total time required to implement the first model is 22.2589 s. The second model combines FCM and particle swarm optimization (PSO) to obtain better results. The hybrid algorithm, i.e., FCM–PSO, uses the DB index as objective function. The experimental results show that the proposed hybrid FCM–PSO method is effective. The total time of implementation of this model is 89.6087 s. The third model combines FCM with a genetic algorithm (GA) to obtain better results. This hybrid algorithm also uses the DB index as objective function. The experimental results show that the proposed hybrid FCM–GA method is effective. Its total time of implementation is 50.8021 s. In addition, this study uses cluster validity indexes to determine the best partitioning for the underlying data. Internal validity indexes include the Jaccard, Davies Bouldin, Dunn, Xie–Beni, and silhouette. Meanwhile, external validity indexes include Minkowski, adjusted Rand, and percentage of correctly categorized pairings. Experiments conducted on brain tumor gene expression data demonstrate that the techniques used in this study outperform traditional models in terms of stability and biological significance.
This abstract focuses on the significance of wireless body area networks (WBANs) as a cutting-edge and self-governing technology, which has garnered substantial attention from researchers. The central challenge faced by WBANs revolves around upholding quality of service (QoS) within rapidly evolving sectors like healthcare. The intricate task of managing diverse traffic types with limited resources further compounds this challenge. Particularly in medical WBANs, the prioritization of vital data is crucial to ensure prompt delivery of critical information. Given the stringent requirements of these systems, any data loss or delays are untenable, necessitating the implementation of intelligent algorithms. These algorithms play a pivota
... Show MoreIn this work the effect of choosing tri-circular tube section had been addressed to minimize the end effector’s error, a comparison had been made between the tri-tube section and the traditional square cross section for a robot arm, the study shows that for the same weight of square section and tri-tube section the error may be reduced by about 33%.
A program had been built up by the use of MathCAD software to calculate the minimum weight of a square section robot arm that could with stand a given pay load and gives a minimum deflection. The second part of the program makes an optimization process for the dimension of the cross section and gives the dimensions of the tri-circular tube cross section that have the same weight of
... Show MoreIn the current worldwide health crisis produced by coronavirus disease (COVID-19), researchers and medical specialists began looking for new ways to tackle the epidemic. According to recent studies, Machine Learning (ML) has been effectively deployed in the health sector. Medical imaging sources (radiography and computed tomography) have aided in the development of artificial intelligence(AI) strategies to tackle the coronavirus outbreak. As a result, a classical machine learning approach for coronavirus detection from Computerized Tomography (CT) images was developed. In this study, the convolutional neural network (CNN) model for feature extraction and support vector machine (SVM) for the classification of axial
... Show MoreDandruff and seborrheic dermatitis (SD) are common skin disorders affecting the scalp and extending to other body sites in the case of SD. They are associated with pruritus and scaling, causing an esthetical disturbance in the population affected. Treatment of such conditions involves using a variety of drugs for long terms, thus optimizing drug formulation is essential to improve therapeutic efficacy and patient compliance. Conventional topical formulations like shampoos and creams have been widely used but their use is associated with disadvantages. To overcome such effects, novel topical nanotechnology-based formulations are currently under investigation. In the following article, we highlight recently published formulatio
... Show MoreThe most common nosocomial fungal infection in hospitals is urinary tract candidiasis. Candida albicans is the most prevalent cause of nosocomial fungal urinary tract infections, however Candida species distribution is changing rapidly. At the same time, the rise in urinary tract candidiasis has resulted in the emergence of antifungal-resistant Candida species. This study aimed to diagnose Candida Spp. In women with UTI and reveal the nucleotides sequences of CA-INT-L Gene to look for mutation within the gene. This study included 100 women patients suffering from urinary tract infections and vaginal swabs samples from those individuals were taken to identify the presence of Candida. They were between the ages of 22 and 67. Candida i
... Show More Fusobacterium are compulsory anaerobic gram-negative bacteria, long thin with pointed ends, it causes several illnesses to humans like pocket lesion gingivitis and periodontal disease; therefore our study is constructed on molecular identification and detection of the fadA gene which is responsible for bacterial biofilm formation. In this study, 10.2% Fusobacterium spp. were isolated from pocket lesion gingivitis. The isolates underwent identification depending on several tests under anaerobic conditions and biochemical reactions. All isolates were sensitive to Imipenem (IPM10) 42.7mm/disk, Ciprofloxacin (CIP10) 27.2mm/disk and Erythromycin (E15) 25mm/disk, respectively. 100% of
The efficiency of egg yolk emulsion in coating DNA and its delivery across cellular membranes was evaluated in comparison with liposomes DOPE . The murine leukemia viral oncogene v-abl , cloned on pBR322 was used as a DNA substrate for direct injection into mice tissue . the DNA complexes were prepared by mixing the DNA with egg yolk emulsion and liposome . Each was directly injected into mice peritoneal cavity with proper control. The gene delivery was examined phenotypically by blood analysis and cytogenetic analysis . Chromosomal changes were detected in the bone marrow as from the fourth day post inoculation through the eleventh day when chromosomal ring s could be seen . this was accompanied by decrease in the WBC count ,
... Show More