Diabetes is one of the increasing chronic diseases, affecting millions of people around the earth. Diabetes diagnosis, its prediction, proper cure, and management are compulsory. Machine learning-based prediction techniques for diabetes data analysis can help in the early detection and prediction of the disease and its consequences such as hypo/hyperglycemia. In this paper, we explored the diabetes dataset collected from the medical records of one thousand Iraqi patients. We applied three classifiers, the multilayer perceptron, the KNN and the Random Forest. We involved two experiments: the first experiment used all 12 features of the dataset. The Random Forest outperforms others with 98.8% accuracy. The second experiment used only five attributes of the training process. The results of the second experiment showed improvement in the performance of the KNN and the Multilayer Perceptron. The results of the second experiment showed a slight decrease in the performance of the Random Forest with 97.5 % accuracy.
Background: Diabetes mellitus is a chronic disease with an increasing prevalence worldwide and characterized by an increase in oxidative stress and inflammation. The most important factor that is responsible for oxidative stress and production of reactive oxygen species (ROS) is hyperglycemia. The major targets of ROS are proteins. The most common and widely used biomarker of severe oxidative protein damage is protein carbonyl content.
The study was designed to assess the serum level of protein carbonyl as a marker of protein oxidation in patients with type 2 diabetes mellitus and to evaluate the effect of age, body weight, waist circumference, diabetic control and disease duration on the level
... Show MoreThe research utilizes data produced by the Local Urban Management Directorate in Najaf and the imagery data from the Landsat 9 satellite, after being processed by the GIS tool. The research follows a descriptive and analytical approach; we integrated the Markov chain analysis and the cellular automation approach to predict transformations in city structure as a result of changes in land utilization. The research also aims to identify approaches to detect post-classification transformations in order to determine changes in land utilization. To predict the future land utilization in the city of Kufa, and to evaluate data accuracy, we used the Kappa Indicator to determine the potential applicability of the probability matrix that resulted from
... Show MoreAbstract
Objective(s): To evaluate blended learning in nursing education at the Middle Region in Iraq.
Methodology: A descriptive study, using evaluation approach, is conducted to evaluate blended learning in nursing education in Middle Region in Iraq from September 26th, 2021 to March 22nd, 2022. The study is carried out at two Colleges of Nursing at the University of Baghdad and University of Tikrit in Iraq. A convenient, non-probability, sample of (60) undergraduate nursing students is selected. The sample is comprised of (30) student from each college of nursing, Self-report questionnaire is constructed from the literature, for e
... Show MoreThe study aims to identify the level of cognitive beliefs, as well as to identify the level of self-organized learning strategies among intermediate school students. The study also aims to identify the differences in the level of self-organized learning strategies among intermediate school students in term of gender, branch (scientific, literary). In order to achieve the research objectives, the researcher designed a scale to measure the cognitive beliefs. As for the scale of self-organized learning strategies, the researcher adopted a scale of (Pintrich et al. 1991), which was translated by (Izzat Abdelhamid, 1999) , For self-organized learning strategies, the sample consisted of (400) students from the research population, whic
... Show MoreEarly detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze med
... Show MoreRelying on modern work strategies, such as adopting scientific inductions, consolidates the information in the learner’s memory, develops the skill work of the football player, and raises the efficiency of their motor abilities. From this standpoint, the researcher, who is a teacher at the University of Baghdad, College of Physical Education and Sports Sciences, and follows most of the sports club teams in youth football, believes that there must be From extrapolations through the machine and employing it in the field to serve the skill aspect and benefit from scientific technology in development and making it a useful tool to serve the sports field in football, as the goal of the research was the efficiency of machine extrapolation in de
... Show MoreThe importance of the research is evident in the use of exercises with the training device, which is one of the modern techniques in teaching the abilities of players, especially in teaching the skill of the backhand, and in improving the accuracy of the performance of players and increasing the contribution to the formation of a base for the game for players who have a good level of learning and upgrading the game to reach a certain achievement, and the research issue was represented in the lack of accuracy in sending balls to the required areas to achieve points, especially in the performance of the skill of the backhand due to the speed of play during the course of the match, and the study aimed to introduce modern technology usi
... Show MoreThis paper describes a practical study on the impact of learning's partners, Bluetooth Broadcasting system, interactive board, Real – time response system, notepad, free internet access, computer based examination, and interaction classroom, etc, had on undergraduate student performance, achievement and involving with lectures. The goal of this study is to test the hypothesis that the use of such learning techniques, tools, and strategies to improve student learning especially among the poorest performing students. Also, it gives some kind of practical comparison between the traditional way and interactive way of learning in terms of lectures time, number of tests, types of tests, student's scores, and student's involving with lectures
... Show MoreType 2 daibetes mellitus (T2DM) is a global concern boosted by both population growth and ageing, the majority of affected people are aged between (40- 59 year). The objective of this research was to estimate the impact of age and gender on glycaemic control parameters: Fasting blood glucose (FBC), glycated hemoglobin (HbA1C), insulin, insulin resistance (IR) and insulin sensitivity (IS), renal function parameters: urea, creatinine and oxidative stress parameters: total antioxidant capacity (TAC) and reactive oxygen species (ROS). Eighty-one random samples of T2DM patients (35 men and 46 women) were included in this study, their average age was 52.75±9.63 year. Current study found that FBG, HbA1C and IR were highly significant (P<0.01) inc
... Show MoreThis study employs evolutionary optimization and Artificial Intelligence algorithms to determine an individual’s age using a single-faced image as the basis for the identification process. Additionally, we used the WIKI dataset, widely considered the most comprehensive collection of facial images to date, including descriptions of age and gender attributes. However, estimating age from facial images is a recent topic of study, even though much research has been undertaken on establishing chronological age from facial photographs. Retrained artificial neural networks are used for classification after applying reprocessing and optimization techniques to achieve this goal. It is possible that the difficulty of determining age could be reduce
... Show More